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ABSTRACT

Context. Deriving physical parameters from integrated galaxy spectra is paramount to interpret the cosmic evolution of the star for-
mation, chemical enrichment, and energetic processes at play. Previous studies have highlighted the power of interstellar medium
tracers but also the associated complexities that can be captured only through sophisticated modeling approaches.
Aims. We developed modeling techniques to characterize the ionized gas properties in the subset of 2052 star-forming galaxies from
the volume-limited, dwarf-dominated, z ∼ 0 ECO catalog (stellar mass range M∗ ∼ 108−11 M�). Our study sheds light on the internal
distribution and average values of parameters such as the metallicity, ionization parameter, and electron density within galaxies.
Methods. We used the MULTIGRIS statistical framework to evaluate the performance of various models using strong lines as con-
straints. The reference model involves physical parameters distributed as power laws with free parameter boundaries. Specifically,
we used combinations of 1D photoionization models (i.e., considering the propagation of radiation toward a single cloud) to match
optical H ii region lines, in order to provide probability density functions of the inferred parameters.
Results. The inference predicts nonuniform physical conditions within galaxies. The integrated spectra of most galaxies are domi-
nated by relatively low-excitation gas with a metallicity around 0.3 Z�. Using the average metallicity in galaxies, we provide a new fit
to the mass-metallicity relationship which is in line with direct abundance method determinations from the low-metallicity calibrated
range up to high-metallicity stacks. The average metallicity shows a weakly bimodal distribution which may be due to external (e.g.,
refueling of non-cluster early-type galaxies) or internal processes (higher star-formation efficiency in metal-rich regions). The specific
line set used for inference affects the results and we identify potential issues with the use of the [S ii] line doublet.
Conclusions. Complex modeling approaches may capture diverse physical conditions within galaxies but require robust statistical
frameworks. Such approaches are limited by the inherent 1D model database as well as caveats regarding the gas geometry. Our
results highlight, however, the possibility to extract useful and significant information from integrated spectra.
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1. Introduction

Spectroscopic diagnostics of the interstellar medium (ISM) in
galaxies hold tremendous diagnostic power, for example, on the
star-formation rate (SFR), gas masses, or the fraction of ioniz-
ing radiation due to active galactic nuclei (AGNs). Yet we do
not know precisely how to interpret spatially unresolved spec-
tra by accounting for and modeling the complex mechanisms
that produce the observed, integrated, emission. As we accu-
mulate more high-z observations as well as wide-field and all-
sky spectroscopy lacking spatial resolution, it becomes urgent
to design a modeling framework to derive robust and reli-
able physical parameter distributions highlighting galaxy evo-
lution mechanisms. Furthermore, integrated observations may
encompass enough information to actually recover such distribu-
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tions, thereby enabling some of the power of integral-field spec-
troscopy (IFS) without actually performing it.

Historically, long-slit spectroscopy or integrated spec-
troscopy have been used to probe some kinds of average phys-
ical conditions in galaxies or to identify dominant excitation
sources. Integrated line ratios are, for instance, commonly inter-
preted using 1D photoionization grids (i.e., assuming a single
cloud illuminated by a unique radiation source – or possibly
several co-spatial radiation sources – with a plane-parallel or
spherical geometry) in order to trace the gas electron den-
sity and pressure, the ionization parameter (U), the metallic-
ity (Z), SFR, or excitation mechanism diagnostics (see, e.g.,
Kewley et al. 2019). Such a hypothesis may reflect either a
single “representative” H ii region or, equivalently, an ensem-
ble of H ii regions with similar properties (see illustration
in Fig. 1).
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It is generally difficult to evaluate the reliability and actual
meaning of the quantities derived thusly and it is therefore cru-
cial to understand potential biases and selection effects due to
the hypothesis of a single emission component versus the com-
bined emission of various components and physical mechanisms
(see, e.g., Sorba & Sawicki 2015, 2018 for stellar mass determi-
nations). Star-forming galaxies are indeed known to include the
following:

– Gas that follows a density distribution related to turbulence,
self-gravitation, and rotational support (e.g., Khullar et al.
2021);

– Metallicity variations within galaxies in the form of gradients
but also higher order variations (e.g., Poetrodjojo et al. 2018;
Williams et al. 2022; Nakajima et al. 2024);

– Molecular clouds, some associated with recent star forma-
tion (e.g., Tacconi et al. 2020; Saintonge & Catinella 2022);

– A collection of H ii regions following some luminosity func-
tion (e.g., Santoro et al. 2022), with some of them leaking
ionizing photons (e.g., Della Bruna et al. 2021);

– Stellar age gradients (e.g., Riggs et al. 2024); and
– Additional excitation sources such as Wolf-Rayet stars, high-

mass X-ray binaries, or AGNs, with the stellar clusters and
AGN that may or not be co-spatial, resulting in coincident or
non-coincident geometries (Richardson et al. 2022).

In some rare cases (e.g., guided by imagery or spatially
resolved spectroscopy), it is possible to describe a specific star-
forming region or even a specific galaxy as a single domi-
nant stellar cluster surrounded by ISM shells, which enables
the use of full 3D or pseudo 3D models (with photoioniza-
tion and chemistry) with arbitrary geometries (e.g., M3; Jin et al.
2022, PyCloudy; Morisset 2013; Fitzgerald et al. 2020). Three-
dimensional Monte-Carlo radiative transfer codes are also use-
ful in that they can handle potentially complex geometries and
density structures (e.g., Baes et al. 2003, 2011; De Looze et al.
2014) with promising avenues toward a fully self-consistent 3D
model (Romero et al. 2023). Despite these possible improve-
ments, the geometry is never a free parameter in the mod-
els that involve chemistry and photoionization. It must also be
added that radiation magneto-hydrodynamical simulations are
now able to solve large chemical networks (e.g., Katz et al. 2022;
Katz 2022), while simulation databases are increasingly avail-
able (e.g., Katz et al. 2023) but the comparison to observations
remains difficult due to the generally restricted parameter space
(e.g., regarding cosmic ray ionization rates or the dust-to-gas
mass ratio).

Due to the difficulty in designing 3D models, single 1D mod-
els are frequently used, often in conjunction with modern sta-
tistical frameworks (e.g., BEAGLE; Chevallard & Charlot 2016,
CIGALE; Burgarella et al. 2005; Boquien et al. 2019; Yang et al.
2022). It should be noted that 1D models can be somewhat
optimized by considering different geometries (e.g., spherical
geometry with thin shells or filled spheres; e.g., Stasińska et al.
2015), by including incomplete shells (matter- and density-
bounded regions; e.g., Péquignot 2008; Cormier et al. 2015;
Ramambason et al. 2020, 2022), or by accounting for the flux-
averaged integrated emission of evolving H ii regions (e.g.,
Dopita et al. 2006a; Groves et al. 2008; Pellegrini et al. 2019).

Another avenue consists in combining 1D models, either
representing a few “sectors” around stellar clusters (e.g.,
Péquignot 2008; Cormier et al. 2015; Lebouteiller et al. 2017;
Cormier et al. 2019; Madden et al. 2020; Ramambason et al.
2022) or statistical distributions of many emitting compo-
nents within a galaxy (e.g., Richardson et al. 2014, 2016, 2019;
Lebouteiller & Ramambason 2022; Ramambason et al. 2024;

Marconi et al. 2024; Varese et al. 2025; Morisset et al. 2025).
Such combinations provide useful alternatives to 3D models as
long as projection effects are not an important issue.

Classically, the approach to model an integrated galaxy is
often driven by the availability of tracers. In general, one prefers
the simplest possible model (i.e., the smallest possible set of
free parameters) that matches available observations, while more
complex configurations (such as combinations of 1D models) are
usually introduced out of necessity. This raises an important phe-
nomenological question as to whether models should consider
the following:

– An optimal model “architecture” (i.e., choice of physical and
geometrical parameters) adapted to the data and preventing
too much overfitting. The drawback is that different physi-
cal descriptions of the galaxy are solely considered based on
what tracers are available, resulting in “representative” mod-
els that are often difficult to interpret.

– A model architecture driven by a – possibly complex – phys-
ical description of the galaxy, with the most likely parameter
values inferred from available observations. This may result
in weakly constrained model parameters when few tracers
are available but the model itself remains identical with addi-
tional tracers.

In the present study, we start from the principle that the model
architecture represents a physical object and is expected to be
as robust as possible against the set of available tracers. For this
we relied on combinations of 1D models (“topological models”
as pioneered in Péquignot et al. 2002; Péquignot 2008), as they
enable a high enough level of complexity that may approach the
actual distribution of source and ISM clouds – despite several
biases and caveats – while also being easily parameterized. In
other words, we consider that the improvements enabled by such
combinations compared to single 1D models largely compensate
for potential biases. Apart from the physically motivated neces-
sity to include distributions of components and parameters in
order to extract specific parameters of interest related to galaxy
evolution, we are also interested in actually recovering the intrin-
sic variation of physical conditions (metallicity, density, etc.),
keeping in mind that IFS samples of dwarf galaxies are particu-
larly small and that such indirect methods may provide promis-
ing alternatives.

Assuming such a modeling approach, it is essential to con-
struct a reliable framework to compare models and observa-
tions. Probabilistic methods are most adapted as they remain
useful when the set of tracers changes and/or when parame-
ters are correlated. Full precomputed grids (including all poten-
tial parameter combinations) enable brute-force methods with a
Bayesian likelihood calculated for every model and they are rel-
atively quick to process large observation sets (e.g., Blanc et al.
2015; Thomas et al. 2016). However, for this work, we relied on
on-the-fly Bayesian likelihood calculations within the statistical
framework MULTIGRIS1 (Lebouteiller & Ramambason 2022).
MULTIGRIS enables one to account for nuisance variables and is
better adapted to a large number of parameters. For completeness,
it must be mentioned that neural networks are also increasingly
used to match model predictions and observations, especially in
the case of a large number of parameters (e.g., Kang et al. 2022;
Morisset et al. 2025). Furthermore, new deep learning methods
enable model outcomes to be emulated in even faster ways than
regular interpolation methods (e.g., Palud et al. 2023).

We focus on a star-forming galaxy sample extracted
from the volume-limited Environmental COntext (ECO) survey

1 https://gitlab.com/multigris/mgris
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Fig. 1. Illustration of topologies using multicomponent models (1C1S and 1C2S) and integrated distributions (LOC). 1C1S assumes a stellar pop-
ulation described with a single age associated with an ISM component with uniform conditions. 1C2S uses the same stellar population hypothesis
as 1C1S but enables two distinct sets of uniform ISM conditions. LOC models gradually consider parameters as power-law distributions.

(Moffett et al. 2015; Polimera et al. 2022; Hutchens et al. 2023),
which is complete into the dwarf galaxy regime and for which
there should be minimal AGN contamination. Most of the galax-
ies are dwarf galaxies, but we can study statistically meaning-
ful correlations between parameters and internal variations over
a large mass range. Assuming that past versions of massive
galaxies resemble low-mass galaxies in the present sample at
z ∼ 0, we may interpret our results as a potential probe of evo-
lutionary pathways. Specifically, we wish to examine the fol-
lowing: 1) the range of physical conditions present in the ECO
sample under the most realistic hypothesis of multiple emitting
components and how these conditions evolve as a function of
statistically averaged quantities (e.g., as a function of metal-
licity); and 2) the link between physical parameters such as U
and Z, and their connection to galaxy evolution parameters such
as SFR.

In Sect. 2 we present the framework to assess the various
model architectures used to model galaxies. We then present the
application of this framework to the ECO star-forming galaxy
sample with constraints from optical line spectroscopy (Sect. 3).
Results are described in Sect. 4 where we examine the following:
1) the influence of the line set used, and find potential issues with
the [S ii] lines; 2) the differences between various model archi-
tectures, and find that architectures using statistical distributions
outperform single 1D models; and 3) the main model fit param-
eters. Section 5 explores the following: 1) correlations between
physical parameters, with strong correlations of all parameters
with metallicity Z; and 2) the recovery of internal distributions
within galaxies with an emphasis on the metallicity dispersion.
We also discuss the potential existence and implication of a
metallicity bimodality as well as the mass-metallicity relation-
ship. For the latter, we do find evidence of a significant increase
in metallicity between stellar masses 109.5−1010 M�.

2. Modeling framework

2.1. Definition of model architectures (topological models)

Photoionization models are used to describe parameters related
to the sources (spectral energy distribution, luminosity), the ISM
(density n, chemical composition, distance from source, etc.),
and the gas excitation conditions (ionization parameter U). The
simplest approach to model a full galaxy considers a single “vir-
tual” stellar cluster representing all clusters in the galaxy with
spherically symmetric ISM conditions. This single 1D model
may be either interpreted as representing 1) the full galaxy with
all excitation sources being co-spatial, resulting in “effective”
(or “representative”) galaxy-wide parameters, or 2) a collection
of strictly identical 1D components (clusters surrounded with
ISM) whose total luminosity amounts to that of the galaxy. Both
interpretations are equivalent as long as the radiation transfer
is controlled by the absorption of UV ionizing photons by the
gas (classical H ii regions hypothesis described by the Ström-
grem sphere assumption; Osterbrock & Ferland 2006). We show
in Figure 1 (top left) an illustration of such models to mimic a
galaxy’s emitting components.

We may then consider a linear combination of two or few
“components”, with each component representing a single 1D
photoionization model. The combination may describe either
1) several ISM components surrounding a single stellar cluster
(i.e., well adapted to single H ii regions with relatively dense
and diffuse “sectors” around the young massive cluster; see,
e.g., Cormier et al. 2019; Ramambason et al. 2022), 2) several
stellar clusters each surrounded with identical ISM conditions
(i.e., well adapted to the case of young SF regions and old stel-
lar populations), or 3) any combination of the above. A critical
caveat is that the linear combination assumes that the compo-
nents are independent. Consequently, radiation escaping from
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one component does not affect other components. We will gen-
erally refer to these relatively simple architectures of one or a
few 1D models as multicomponent models or “xCyS”, for x
clusters associated with y ISM shell components around each
cluster.

As the number of components increases, it becomes nec-
essary to tie them through a statistical distribution described
by specific hyperparameters. This is both to keep a manage-
able number of free parameters as well as to consider a phys-
ically meaningful distribution. This is the motivation behind
the locally optimally emitted cloud (LOC; Ferguson et al. 1997;
Richardson et al. 2014) hypothesis that the observed emission is
the result of strong selection effects due to the fact that some
emission lines are brighter under certain conditions. Therefore,
we may consider a large number of clouds whose model param-
eters (e.g., density, stellar cluster age) are distributed as power
or normal laws defined and integrated between either fixed or
free boundaries. We will generally refer to these more com-
plex model architectures as “integrated” distributions or simply
“LOC”. Progressively more complex LOC models are illustrated
in Figure 1.

The LOC equation for an extensive observable L (e.g., a line
flux) for a series of parameter sets p = (p0 . . . pn) gives

Ltot =

pmax∑
pmin

n∏
i=0

Φ(pi)I(p)∆(pi), (1)

with I(p) the observable for a given parameter set, ∆(pi) the
grid parameter interval, and Φ(pi) the weight associated with
the parameter pi according to some statistical distribution (e.g.,
power law). For instance, the weight for a power-law distribution
of some parameter p would be

Φ(p) =

{
10αp if p ∈ [pmin, pmax]
0

}
. (2)

The weight for a parameter that does not follow any particular
distribution and that is described instead by a single value pval
would be defined as

Φ(p) = δp =

{
1 if p = pval
0

}
. (3)

The combined weight for a parameter set p is then

Φ(p) =

n∏
i=0

Φ(pi). (4)

The free parameters are either the model parameters themselves
(pval for a single valued distribution) or the hyperparameters
(e.g., αp, pmin, pmax for a power-law distribution).

For any parameter distribution considered, the average
parameter value is a useful quantity to calculate, e.g., to compare
to single 1D model approaches. The average parameter value is
defined as

pavg =

∑pmax
pmin Φ(p)p∑pmax
pmin Φ(p)

, (5)

where p is in log scale2.
2 Since the integration is performed in the logarithmic space for all
parameters, it is natural to calculate the LOC average as the average of
the logarithmic quantities. For instance, the combination of two models
with all parameters being the same except for different densities 103 and
100 cm−3 compared to two models of densities 103 and 10−1 cm−3 should
lead to significantly different results which would be better reflected by
the average of the log densities rather than the linear ones.

We emphasize that the distribution of components that we
may recover using this method does not correspond to the dis-
tribution of what actually composes a galaxy but it is instead
the luminosity-weighted distribution of the components that
contribute to the optical emission line fluxes. For benchmark
purposes, we compared the LOC hyperparameters inferred on-
the-fly to results obtained with precomputed LOC grids, (i.e.,
with tabulated hyperparameters). The inference of hyperparam-
eters quickly becomes more efficient compared to pre-tabulated
grids when the number of parameters increases and also pro-
vides a flexible framework with priors and potential nuisance
variables.

2.2. Statistical framework with MULTIGRIS

While LOC distributions may be adapted to particular types
of galaxies or regions within galaxies, there is often no prior
knowledge as to what distributions should be considered. In the
following, we propose one potential method to compare var-
ious architectures. We use the statistical framework provided
by MULTIGRIS (Lebouteiller & Ramambason 2022) which per-
forms on-the-fly inference of combination of 1D models through
Markov Chain Monte Carlo (MCMC) sampling. In the follow-
ing, we refer to the modelM as a model “architecture” defined
by a certain distribution of parameters. The posterior probability
distribution for a given modelM is defined as

p(θ|O,M) =
p(O|θ,M)p(θ|M)

p(O|M)
, (6)

with O the data, θ the parameters, p(O|θ,M) the likelihood,
p(θ|M) the prior probability, and p(O|M) the marginal likeli-
hood.

Several LOC distributions have been implemented in
MULTIGRIS (power laws, broken power laws, and normal dis-
tributions), with the ability to provide priors on the hyperpa-
rameters (slope, mean, standard deviation, etc.). Since most ISM
models are usually too long to run for individual MCMC draws,
the inference relies on the 1D model grid sampling, together with
an interpolation method which can be either nearest neighbors or
multidimensional linear interpolation. In practice, hyperparam-
eters for LOC models are either continuous (slope αp for the
power law, mean, and standard deviation for a normal distribu-
tion) or using linear or nearest neighbor interpolation (bound-
aries pmin,max). The first application of LOC distributions with
MULTIGRIS was presented in Ramambason et al. (2024) where
it was required to explain the emission of the CO(1–0) emis-
sion in metal-poor galaxies, with the cloud depth in particular
described by a broken power-law distribution.

2.3. Comparative and performance metrics

Several metrics are important to consider when evaluating a
model. In particular, we are interested in how well the model
captures the data (“goodness” of fit), which is well described by
the posterior predictive p-value (PPP). The PPP performs statis-
tical tests of many simulated datasets from the model, using the
parameters inferred from the observed data. The PPP is then the
proportion of these simulated test statistics that are more extreme
than the test statistic calculated from the real data, and is defined
as

p(Orep|O) =

∫
θ

p(Orep|θ)p(θ|O)dθ, (7)
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A priori probability
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(RELATIVE)
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predictive

p-value
(ABSOLUTE)

Fig. 2. Decision tree for model architectures. The successive metrics are indicated in the middle. Green arrows and boxes indicate the path of
maximum likelihood for model consideration.

with Orep as generated sets of replicated observables (see, e.g.,
Galliano et al. 2021). Ideally the PPP should be around 0.5,
while values near 1 imply a poor fit (underfit) and values near
0 imply a an overfit.

Another important quantity is the marginal likelihood which
integrates all parameter combinations from the prior space and
therefore enables hypothesis testing (i.e., what is the simplest
model adapted to the data), defined as:

p(O|M) =

∫
θ

p(O|θ,M)p(θ|M)dθ. (8)

When comparing two models to each other, one may use the
Bayes factor which is the ratio of the marginal likelihoods. How-
ever, it is necessary to consider the a priori probability of the
models themselves, p(M), describing how well the set of param-
eters is adapted to the object we wish to model (independently on
the exact set of observations). The Bayes Factor for two models
M1 andM2 then becomes

BF =
p(O|M1)
p(O|M2)

p(M1)
p(M2)

. (9)

While the PPP are easily calculated and interpreted in abso-
lute ways, the marginal likelihood and the a priori probability
of the models are much more complicated. The marginal likeli-
hood is often too difficult to evaluate for simple random walkers
as it is necessary to sample well enough the entire prior space.
MULTIGRIS uses the Sequential Monte-Carlo method which runs
a large number of small Markov Chains across the prior space in

a series of steps until convergence to the posterior distribution
(Del Moral et al. 2012). This makes it possible to estimate the
marginal likelihood for each model3. The a priori model proba-
bility p(M) is difficult, if not impossible, to evaluate. By default
one may simply consider that a set of models are equally plausi-
ble to represent a galaxy and therefore ignore these probabilities,
or else that one model is far more plausible than another one.

Armed with the above quantities, we propose the following
decision tree when several model architectures are to be com-
pared, with all steps illustrated in Figure 2.

– First, a qualitative assessment of p(M) is necessary to decide
arbitrarily which model architectures are plausible to start
with. Plausible model architectures are considered realistic
representations of galaxies that depend the least possible on
the exact set of tracers used for constraints. The probability
p(M) typically involves parameters that cannot be varied,
including the overall model architecture itself (e.g., few sec-
tors versus LOC). It is worth noting that implausible models
may actually lead to accurate predictions for some simple
galaxy parameters (e.g., SFR, ionized gas mass).

– Second, it is important to evaluate the likelihood of the prior
space to generate the data, which is encompassed by the
marginal likelihood, p(O|M). Large values imply that the
model architecture is complex enough given the data and that

3 While the Sequential Monte-Carlo method is particularly adapted to
multi-model posterior distributions, we keep in mind that minor modes
may be dropped during the resampling phase, effectively cropping the
posterior distribution. Our inference runs use the largest possible num-
ber of particles to alleviate this issue.
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Fig. 3. Excitation diagrams for the inference run with (top) and without (bottom) [S ii] lines. The color points show the modeled values (see
Sect. 3.3.2), with the color scaling with the metallicity. The solid gray curves show the extreme starburst delimiting line from Kewley et al. (2001),
while the dashed gray curve is from Kauffmann et al. (2003), and the dashed blue curve is from Stasińska et al. (2006). The thin black lines shows
the distance between the observed and modeled ratios. For [N ii]/Hαwe use the specific prescription from P22 using both [N ii] lines with a scaling
factor.

the prior space is likely to generate the data. Inversely, low
values imply either that the model architecture is too complex
given the data – but may be fine if more data become available
– and/or that the prior space is simply not likely to generate the
data. The combination of the first and second step corresponds
to the Bayes Factor described in Equation (9).

– Finally, plausible, complex enough, model architectures
whose prior space is likely to generate the data can be
selected based on their predictive diagnostics. The PPP can
be used to distinguish between overfitting, ideal fitting, or
underfitting. Model architectures selected so far but result-
ing in underfits correspond to well-adapted architecture, with
some issues regarding for instance the data or ill-defined
parameters. On the other hand, overfitting is not a problem
per se since it merely reflects relatively weak constraints (or
overestimated observational uncertainties) and our approach
is committed to the most realistic models possible. With such
overfits, the resulting posterior distribution may be partic-
ularly wide, or even identical to the prior distribution, but
the predictions should remain reliable enough to interpret. In
other words, overfitting may describe a realistic model that
simply needs more observables to constrain better.

We emphasize that PPP is the only metrics in the sequence that
can be interpreted in an absolute way. The final models passing
these steps may then be directly considered or even averaged.
We also consider another metric for convenience in some plots

of this study, which is the fraction of posterior draws matching
the observed values within 3σ.

3. Application to ECO star-forming galaxy sample

3.1. Observations and sample

We use data from the Environmental COntext (ECO) catalog DR3
(Moffett et al. 2015; Hutchens et al. 2023), which is a volume-
limited data set in the northern spring sky spanning a recession
velocity range of 3000 < cz [km s−1] < 7000 (where cz is cor-
rected for Local Group motion and is based on group-averaged
cz values to minimize peculiar velocities). Being volume-limited,
the sample mostly comprises low-mass dwarf galaxies. ECO
has been crossmatched with SDSS spectroscopic observations
by (Polimera et al. 2022, hereafter P22) and Polimera et al. (in
prep.). We use the MPA-JHU catalog for the line flux measure-
ments (Tremonti et al. 2004), with the internal extinction correc-
tions based on the Balmer decrement method calculated in P22.
The catalog was filtered in order to use reliable detections with
a signal-to-noise ratio (S/N) greater than 5 for the strong lines
Hα, Hβ, [O i] λ6300, [O iii] λ4959, [O iii] λ5007, [N ii] λ6548,
[N ii] λ6584, [S ii] λ6717, and [S ii] λ6731 (see P22).

We select only the subset of star-forming galaxies, relying on
excitation diagrams using [O iii]/Hβ and ([N ii], [S ii], [O i])/Hα
(see P22 and Fig. 3). Specifically we use the “definite-SF”
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category in P22. This category will be revised in Polimera
et al. (in prep.) based on the demarcation line of Stasińska et al.
(2006), and we have verified that the trends presented in this
study remain unchanged depending on which demarcation line
is used (see Appendix A). We note that the S/N requirement
for all lines, and especially on [O i] λ6300, is meant to be able
to help distinguish between star-formation and AGN activity
but produces a somewhat biased toward brighter star-forming
galaxies.

The final sample is therefore almost volume-limited and
comprises 2052 galaxies. Ancillary data is available for ECO,
of which we use in particular the SFR (derived from GALEX
and WISE including machine-learning UV magnitude predic-
tions for half of the sample withough deep near-UV data;
Carr et al. 2024 and Polimera et al., in prep.) and the stellar mass
(Hutchens et al. 2023).

3.2. Database of 1D models

Our modeling approach considers statitical distributions of 1D
models to describe the integrated emission of galaxies (Sect. 2).
We adopt the methodology from Richardson et al. (2022) for the
1D photoionization models in this work. The stellar SEDs orig-
inate from the BPASS v2.0 (Eldridge et al. 2017) models using
an instantaneous star-formation burst (i.e., simple stellar popula-
tion). The post-starburst ages span 1−25 Myr, which ensures that
multiple Wolf-Rayet stages are captured (see D’Agostino et al.
2019). In actuality, the post-starburst age essentially accounts
for the hardness of the radiation field since any given star-
forming region realistically has a mixture of stellar ages. The
stellar metallicities range from 0.05 Z� to 2.0 Z�. Our model grid
extends to 3.0 Z�, but BPASS models are unavailable at these
metallicities, so we substitute 2.0 Z� models in the cases where
Z > 2.0 Z�.

The abundance scalings in the cloud are taken from the
Galactic Concordance Abundances described in Nicholls et al.
(2017) where the solar standard is defined as 12 + log(O/H) =
8.76. We use the depletion patterns described in the appendix
of Richardson et al. (2022) for a fixed depletion strength of
F∗ = 0.45. The model grid uses the parameter Z/Z� for metal-
licity, which refers to the abundances in the cloud prior to grain
depletion. Therefore, one needs to deplete the oxygen abun-
dance by −0.11 dex to obtain “gas-phase abundances” in terms
of 12 + log(O/H). We assume a grain composition like the
Orion Nebula (Baldwin et al. 1991), in addition to including
polycyclic aromatic hydrocarbons (Abel et al. 2008), and use
a D/G ratio scaled with metallicity according to the empiri-
cal relation from Rémy-Ruyer et al. (2014). The hydrogen den-
sity at the face of the gas cloud, log nH varies from 0.5 to 4.0
in 0.5 dex increments, while the ionization parameter U, also
defined at the ionized face, varies from −4.5 to −0.5 in 0.25 dex
increments. The models are run until an electron fraction of
ne/nH = 0.01.

The integrated distributions (LOC) models are drawn from
this grid of 1D models. We briefly describe tests using other
photoionization codes in Sect. 5.3. Our grid includes a potential
radiative component powered by an AGN, but for the present
star-forming sample we select only a subgrid with an “AGN
fraction” (i.e., fraction of ionizing radiation due to an AGN) of
fAGN = 0. We defer the study of galaxies with significant or
dominant AGN fraction but tests have been performed to verify
that the AGN fraction for the present sample, if let free, never
reaches above 8% (see Polimera et al. 2022) with most galaxies
showing fAGN < 4%.

Before inferring the metallicity and other parameters, we
first compare the metallicity from the grid of single 1D models
against empirical line ratio diagnostics from Garg et al. (2024)4.
The metallicity from the grid controls the elemental abundances
that, in turn, are used to compute the radiative transfer within
Cloudy. For this comparison, we restrict the parameter ranges
(average for LOC) to 12+log(O/H) = [7.4, 9.0], U = [−3.5,−2],
and n = [1, 2] to match the ranges used for calibration. For the
LOC distributions, we consider boundaries for U and n that are
typically found in the present study ([−4,−2]) and [1, 3] respec-
tively) and ensure that the average values remain within the cali-
bration ranges. We find good agreements overall across the con-
sidered metallicity range, especially with the N2O2, N2S2, N2,
S2, R3N2, and O3N2 diagnostics (Fig. 4). This implies that the
metallicity parameter in the grid corresponds, to first order, to
the metallicity obtained from the empirical diagnostics.

Differences likely stem from the assumed N/O abundance
ratio prescription in the various calibrations (see specific dis-
cussion in Garg et al. 2022). Any deviation will result in impor-
tant biases if we wish to compare the metallicity from the grid
(e.g., the value inferred through modeling observations) to the
metallicity from empirical calibrations and may highlight spe-
cific model assumptions regarding, for instance, the depletion
pattern of some elements as a function of metallicity.

The best agreement between our models and empirical diag-
nostics is found for N2O2, but the [O ii] doublet is unfortunately
difficult to measure and available only for a small number of
ECO sources and with large uncertainties. All other relatively
reliable empirical diagnostics show some kind of deviations
compared to our models. Therefore, we keep in mind in the fol-
lowing that the metallicity inferred from our models may deviate
somewhat from that obtained with empirical diagnostics.

3.3. Model architectures for ECO star-forming galaxies

3.3.1. Relevant architectures

Based on the a priori model probability p(M) criterion
(Sect. 2.3), LOC models (using either power-law or normal dis-
tributions) are preferred to multicomponent “xCyS” models due
to the evidence of heterogeneity of ISM and energetic source
properties (see introduction). Building upon the recent model-
ing effort from Ramambason et al. (2024), we present here the
first application of LOC models with the age and Z following a
statistical distribution, in addition to n and U. For the integra-
tion boundaries of LOC models (pmin,max), MULTIGRIS consid-
ers by default the minimum and maximum values in the grid for
each parameter, but free boundaries are considered in the present
study.

Overall, many different architectures have been investigated
with the number of random variables ranging from 5 to &20
(Table 1) and we will only focus on a few model architectures
afterward. For simplicity, we present here the results assum-
ing power-law distributions only. The reasoning is that, on first
order, narrow normal distributions may be approximated by sin-
gle parameter values while broad normal distributions may be
approximated by flat power laws. Although it would be inter-
esting to thoroughly test various distributions, we keep in mind
that we may not be able to afford fine-tuning in the model archi-
tecture (e.g., testing a power law versus normal distributions)

4 Contrary to what is indicated in Garg et al. (2024), we do use the
[O ii] doublet sum for N2O2 and we do consider a sum of logarithms
for N2S2.
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Fig. 4. Empirical line ratio diagnostics as a function of metallicity for the model grid (the single 1D model is in blue and the LOC distribution is
in green), compared to the calibration from Garg et al. (2024) in purple. The shaded areas correspond to the range of physical conditions used in
our photoionization grid (see text).

Table 1. Subset of tested model architectures.

1C1S 2C1S LOC U/n LOC U/n/age/Z
δage δage1, δage2 δage αage, agemin,max
δU δU1, δU2 αU , Umin,max αU , Umin,max
δn δn1, δn2 αn, nmin,max αn, nmin,max
δZ δZ1, δZ2 δZ αZ , Zmin,max

RVs 4 8 8 12

Notes. α, δ, as well as minimum and maximum values refer to the dis-
tribution hyperparameters (see Eqs. (2) and (3)). RVs indicates the raw
number of random variables (ignoring potential correlations).

considering the various other caveats (e.g., projection effects, 1D
model grid hypotheses).

We consider “xCyS” models strictly for comparison and con-
tinuity with previous works, despite the fact that these models
are considered comparatively less realistic because they assume
that the excitation sources or the ISM are fully described by one
or two components typically, i.e., by a single parameter value
(e.g., single density) or by a combination of two parameter val-
ues (e.g., two components with a single density for each).

3.3.2. Model selection

Based on the marginal likelihood p(O|M), the single component
model (1C1S) is not favored compared to the two component
models (1C2S or 2C1S) because the prior space is too simple
and therefore not likely to generate the data. LOC models, on
the other hand, may quickly become too complex given the data.
As mentioned earlier, this is not a problem per se, and we aim to

compare and select the best model architectures that are deemed
realistic enough.

Based on the PPP, we find that 1C2S or 2C1S models per-
form quite well, and the only reason we do not fully consider
them for interpretation is that they were not selected initially as
realistic models based on the a priori probability of the model
p(M) (Sect. 3.3.1). The reason why these models perform so
well is due to the parameter flexibility: the parameters for the
few (or single) considered components are independent, a sin-
gle value per component is fine-tuned to match the observations,
and the value is not necessarily expected to correspond to a phys-
ically meaningful region of the galaxy.

Among LOC models, the best models are those with free
parameter boundaries (pmin,max) for the integration. Even though
models with free boundaries involve a larger number of ran-
dom variables (Table 1), the LOC models with free boundaries
do not indicate significant overfitting (PPP < 0.5) and show
only slightly lower marginal likelihoods compared to the models
with fixed (minimum and maximum in the grid) boundaries due
to the expanded parameter prior space. Our final model archi-
tectures are LOC models with power-law distributions and free
parameter boundaries.

It should be emphasized that the match between the LOC
models and observations is driven simultaneously by the topol-
ogy assumptions (parameters describing such combinations) and
by the inherent 1D model database (emission line predictions
from a set of parameters such as metallicity, ionization param-
eter, etc.). We choose to design the most adequate photoioniza-
tion grid possible and focus on topology improvements, but we
keep in mind that our results are strongly dependent on the refer-
ence grid and that other conclusions could be reached with dif-
ferent prescriptions, e.g., for the radiation sources, or the ISM
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composition (see, e.g., Lecroq et al. 2024). We also remind that
the distributions we implement do not correspond to the entire
ISM of galaxies but are biased toward the emitting components
and, as such, are driven by H ii region properties in this star-
forming galaxy sample.

4. Results

An illustration of the inference results obtained for individual
galaxies is presented in Appendix B. By default, we consider
in the following probability density functions (PDFs) for the
entire sample. For this, we do not simply select the mean of
each parameter for each object but concatenate the draws for all
the objects in order to keep the information contained within the
confidence intervals.

4.1. Influence of the line set

Figure 5 shows that the predicted line fluxes agree within ≈2σ
for all galaxies in the sample with the LOC architecture using
all available lines. Looking at the specific posterior predictive
p-value (PPP) for each line for the 1C1S and LOC architec-
tures using all available lines (Fig. 6), we find that underfitting is
largest for [S ii], [O i], and [N ii], all being slightly overpredicted
by the model. Motivated by the underfitting of [S ii] lines as well
as potential deviations between empirical metallicity diagnostics
involving [S ii] and the metallicity from the grid (Sect. 3.2), we
ran the inference without the [S ii] lines as constraints. We also
considered runs with the [O ii] doublet sum, despite with poor
signal-to-noise ratio, instead of the [S ii] lines.

Figure 7 shows that LOC models ignoring the [S ii] lines per-
form much better. This remains true even using [O ii] instead of
[S ii]. Furthermore, Figure 6 shows that [N ii] and [O i] are dra-
matically better matched (PPP ≤ 0.5) in runs ignoring [S ii] (see
also Fig. 3). In the following, we will consider runs that include
or do not include [S ii] or [O ii] to study the impact of the line set
on our results. The overprediction of [S ii] in the models may be
due to the 1D model grid assumptions (e.g., need to account for
sulfur depletion, need for more refined stellar atmospheres for
the relevant energy range; Sect. 3.2) and/or to systematic effects
in the line measurement available in the SDSS catalogs (see dis-
cussion in Polimera et al. 2022) that may be due to the difficulty
in removing nearby telluric features. We also have verified that
ignoring the [O i] line for the inference of the entire sample does
not significantly modify the metallicity determination.

4.2. Performance of single 1D models (1C1S) versus LOC

Here we wish to compare the – often used – single 1D model
approach (1C1S) to the LOC one. For this comparison we are
therefore interested in biases specifically due to the model archi-
tecture. For this test the LOC boundaries (pmin,max) are not lin-
early interpolated but the slope (αp) is continuously sampled.
Hence we consider 1C1S with all parameters linearly interpo-
lated instead of nearest neighbor for a fairer comparison, keep-
ing in mind that LOC models would perform even better through
boundary interpolation between models.

Figure 7 shows that, even considering the best possible 1C1S
models (with linear interpolation for all parameter), LOC mod-
els always perform better in all metrics. While we show for ref-
erence the results for the inference ignoring [S ii] in Figure 7, the
same results hold for all inference runs, and also hold for tests

Fig. 5. Histogram comparison between predicted and observed fluxes
scaled by the observed errorbar for the entire sample. The vertical lines
delimit the agreement within 3σ.

with only one or two parameters following statistical distribu-
tions instead of single values.

The fact that LOC models globally outperform 1C1S models
strengthens the hypothesis that physical conditions are not uni-
form within the galaxies of the sample, and consequently that
the integrated tracers we observe do contain useful information
about the distribution of matter and radiation sources. Since our
tests show that PPP does not improve significantly beyond (any)
two parameters being distributed as power laws, we conclude
that this is most likely the minimum amount of complexity dic-
tated by the set of tracers we use. However, we keep in mind
that physical motivations exist for all parameters to follow some
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Fig. 6. Posterior predictive p-value (PPP) for each line.

kind of statistical distributions and that LOC models are consid-
ered more likely a priori (independently on observed tracers, i.e.,
with a larger p(M) value) than multicomponent “xCyS” models.

4.3. Physical meaningfulness of LOC average and single 1D
model values

While we show in Sect. 4.2 that the LOC approach outper-
forms the single 1D model approach, potential biases on physical
parameter determinations due to the chosen approach need to be
addressed. Output physical parameters using single 1D models
are often interpreted as some kind of average quantities and we
put this assumption to the test by comparing the single parame-
ter values of 1C1S models to the average quantities from LOC
models (see Eq. (5)).

Globally the 1C1S values are always compatible with the
LOC averages within a factor of a few (Fig. 8). We keep in
mind that for all parameters, 1C1S or LOC averages never reach
the grid minimum or maximum values and that there is no edge
effect. We may either consider the 1C1S approach as some kind
of reference because it is often used and it is therefore reassur-
ing that the LOC average value matches the 1C1S value, or we
may also consider the LOC approach to be more realistic and
viable and it is reassuring that 1C1S models provide values that
do not deviate significantly. However, it should be restated that
the 1C1S models globally perform less well than LOC and that
the biases we identify are interpreted as biases due to the sin-
gle 1D model hypothesis (in other words, we are not trying to
validate the average LOC quantities).

Looking more closely, we find some small deviations. For
the metallicity, there is little bias for very low- and very high-Z
but there is a “kink” around solar metallicities with the 1C1S Z
somewhat lower than the LOC average Z, especially for the run
that includes the [S ii] lines. We find that this bias is not due to
one single specific parameter in the LOC models, but to all of the
parameters in aggregate. For instance, the relatively wider range
of Z (boundaries) around solar metallicities could explain in part
this bias but also the consideration of ranges (LOC) for U or age
that results in a range of Z because of the dependency between
both U and age with Z (see discussion in Sect. 4.4.2).

The age (i.e., spectral hardness of the input radiation field)
parameter shows significant biases, with the 1C1S age being
overestimated in the most metal-poor galaxies (blue points in
Fig. 8) and being underestimated in slightly subsolar to solar
metallicity galaxies (orange points). There is almost no bias for
the highest-Z galaxies (red points).

For the ionization parameter U, there is no clear bias. For
the density n, there is also no clear bias apart from globally
slightly lower values with 1C1S compared to LOC averages.
This is likely due to the relatively poorer performance of 1C1S
(all parameters linearly interpolated) including and especially
with [S ii] lines.

Globally, we notice that there seems to be a special regime
around solar metallicity corresponding to a turnover in U and
age that may lead to significant biases using single 1D model
results. As a function of metallicity, there is a clear trend for the
age (and therefore hardness) to decrease between 20 Myr and
5 Myr until solar metallicity and increase again. Similarly, as a
function of metallicity, there is a clear trend for the ionization
parameter to decrease (until slightly subsolar metallicities) and
increase again. Thus, we definitely see a relationship between
age, Z, and U (see also Sect. 4.4.2). We note that these turnovers
are not driven by the grid minimal or maximal values for each
parameter in the grid.

In summary, biases may exist using single 1D models
that may affect the interpretation of the inferred parameters
or other, related, parameters. The physical parameters tack-
led in this study are related to H ii regions, and their average
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Fig. 7. Performance metrics for the entire sample. From top to bottom: the marginal likelihood and the likelihood (evidence), the absolute posterior
predictive p value (PPP), and the fraction of posterior draws matching the observations within 3σ.

values do not depend significantly on the ISM topology. How-
ever, stronger biases may exist for other specific galaxy param-
eters (e.g., H2 masses, escape fraction of ionizing photons, etc.;
Ramambason et al. 2024).

4.4. Inferring internal parameter distributions within galaxies

In the following we examine the PDF of the average parameter
values within galaxies Zavg,Uavg, navg, ageavg (not to be confused
with the average value across the sample). For some parame-
ters (e.g., Zavg and Uavg), the PDFs for individual objects are
much narrower than the sample PDF, implying that the latter
describes well the different properties of the studied galaxies
(Figs. 9 and B.3). For the other parameters (in particular navg),
the PDFs for individual objects are identical on first order and
the overall sample PDF thus reflects a common PDF, valid for all
galaxies.

The PDFs of the power-law slopes (α) are similar on first
order for all galaxies for any given physical parameter, which
may indicate a universal origin of the distribution but could also
reflect the difficulty in constraining α from the observed tracers
used for inference. Considering the PDFs from Figure B.3, we
propose that small variations of α for a given galaxy will lead
to significant variations of the boundaries, and that the observed
tracers mostly constrain the average physical parameter value.
Small variations do exist, however, for all hyperparameters, from
galaxy to galaxy and from the prior distribution, and we investi-
gate them in the following.

4.4.1. Hyperparameters

The hyperparameter α (slope of the power-law distribution)
reflects the relative proportions of emitting components with
given physical properties. The slopes for age, density, and metal-
licity are close to 0 (Fig. 9), hinting that for most galaxies the
emission is not significantly dominated by a given dense ver-
sus diffuse, old versus young, or high versus low metallicity. For
most galaxies, however, the emission is dominated by relatively
low excitation components (αU < 0), with log Uavg fairly peaked
around ≈−3.2. The low-excitation components, that contribute
most to the total emission of most galaxies, show a narrow range
of log Umin between−4.5 and−3. Inversely, the higher-excitation
components show a wide range of log Umax centered around −2.

The distribution of ageavg peaks around 5 Myr. The distribu-
tion of the lower and upper boundaries peak around agemin ≈ 2
and agemax ≈ 10 Myr respectively, but the upper boundary
extends to the Wolf-Rayet phase at ≈20 Myr, which is the hardest
radiation field in the grid (D’Agostino et al. 2019).

The distribution of navg almost spans the entire parame-
ter space, except if [S ii] lines are used as constraints. While
it is expected that [S ii] lines help constrain the density (e.g.,
Osterbrock & Ferland 2006), we note that these lines may also
cause some biases (Sect. 4.1).

The distribution of Zavg is bimodal, with a stronger bimodal-
ity for the inference run using the [S ii] lines. Most galaxies lie
around Zavg ∼ 0.3 Z� and populate the leftmost peak. The sec-
ondary peak lies around 2 Z� if [S ii] lines are used, and oth-
erwise around solar metallicity. The distribution of the lower
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Fig. 8. Comparison of single 1D models (1C1S) versus LOC averages. The color scales with the metallicity parameter. From top to bottom we
show the results for the runs ignoring [O ii], ignoring [S ii] and [O ii], and ignoring [S ii] (Sect. 4.1). The dotted lines in the leftmost plots indicate
the 0.3 Z� and Z� values.

boundary peaks around Zmin ≈ 0.15 Z�. The distribution of the
upper boundary Zmax is strongly bimodal (Fig. 9), clearly driving
the bimodality of the average metallicity.

In individual galaxies, it must be emphasized that bound-
aries for all parameters are mostly well separated (Fig. 9), yet
there is no prior to force a minimum difference between the
maximum and minimum value to be considered for integration.
In other words, the inference could have resulted in boundaries
being equal or almost equal (i.e., being equivalent to a single
1D model) if this had been a more likely solution (see also
Appendix B).

4.4.2. Correlations between physical parameters

We investigate the correlation between physical parameters
using their average value in each galaxy. Results are shown in
Figure 10 for the inference runs with and without [S ii]. We
note that there is no degeneracy between the parameters and that
the PDFs of individual galaxies clearly prefer one solution (see
example in Fig. B.1).

There is no clear trend between ageavg and Uavg. However,
we find a strong relationship between ageavg and Zavg. The
most metal-poor galaxies are characterized by ageavg ≈ 10 Myr.

Around slightly subsolar metallicities, ageavg reaches down to
≈3 Myr, i.e., a softer radiation field. For high-metallicity galax-
ies, the runs including the [S ii] lines indicate older ages around
≈5 Myr and therefore intermediary hardness, while the runs
ignoring [S ii] flatten around ≈3 Myr. Our sample is selected
based on [O i] detection, thereby selecting relatively hard radi-
ation fields, but other high-metallicity galaxies may actually
not require such hard radiation field. The tendency for high-Z
sources to require a hard radiation field could also be indica-
tive that other high-ionization process may be important (e.g.,
shocks).

The Uavg versus Zavg correlation shows the same trend as
ageavg versus Zavg but with the turn-off occurring at a lower
metallicity. The slight increase of Uavg above 0.3 Z� for the runs
including [S ii] is reminiscent of the result obtained in high-
redshift star-forming galaxies (Reddy et al. 2023). The average
density navg also shows a decreasing trend with metallicity, from
∼500 cm−3 down to ∼50 cm−3, with a significantly tighter trend
for the runs ignoring [S ii].

Although not shown, we observe the same trends for the
slopes αage, αU , and αn versus Z as for the average parameters.
Since the slopes reflect the weight of regions with given physical
parameters toward the integrated galaxy emission, this implies
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Fig. 9. Hyperparameter and average values.
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Fig. 10. Correlations between physical parameters for the runs including (top) or excluding (bottom) the [S ii] lines. The color scale indicates the
sSFR. For U versus Z, the low- and high-Z curves are from Kashino & Inoue (2019) and Ji & Yan (2022) respectively.

that as Zavg decreases, there is an increasing proportion of harder
stellar radiation field, high ionization parameter, and high den-
sity contributing to integrated galaxy spectrum.

5. Discussion

5.1. Ionization parameter versus metallicity

There is evidence in the literature that the ionization parameter
U and the metallicity Z are physically related but the origin of
the relationship is still debated (see, e.g., Dopita et al. 2006b;
Ji & Yan 2022). First, there is evidence that U anticorrelates
with Z in low-metallicity galaxies until about solar metallicity
(or stellar mass ∼1010 M�) (Kashino & Inoue 2019; Reddy et al.
2023; see black curves in Fig. 10). Independently, there is also
evidence that U correlates with Z for metal-rich sources, above
solar metallicity (Ji & Yan 2022). Suprisingly, there are few or
no samples spanning a wide enough range of metallicities to
verify whether these relations are specific to some given metal-
licity regimes. The ECO sample is ideal for studying this rela-
tionship because we have access to a wide range of masses and
metallicities.

Our results show a relatively well-behaved relationship
between Uavg and Zavg, with a steep decline followed by a smooth
increase (almost nonexistent if [S ii] lines are ignored; see
Fig. 10 bottom). Our results are in line with theoretical expec-
tations. The steep decline could be explained by the wind-driven
bubble model for H ii regions of Dopita et al. (2006a), which
would dominate at low-metallicity, together with the lower
opacity of low-metallicity stellar atmospheres resulting in
greater ionizing flux. This interperation is strengthened by mod-
els of multiple H ii regions within a single galaxy (Garner et al.

2025). It should be noted that Kashino & Inoue (2019) show
that, despite the strong apparent anticorrelation between U and
Z in their low-metallicity sample, the U variation depends more
heavily on the specific SFR (sSFR). In summary, U may be con-
trolled by a competition between variations of Z and of sSFR,
with a moderate U versus Z anticorrelation at low-metallicity
steepened by sSFR.

On the other hand, the smooth increase of Uavg in the most
metal-rich galaxies could be due to an increased SFR. This ele-
vated SFR might be itself related to the quick enrichment of the
lower-metallicity regions in metal-rich galaxies (see Sect. 5.2.1).

5.2. Distribution of physical parameters within galaxies

The LOC approach is motivated by the study of potential biases
due to a single 1D model approach (Sect. 4.3) but also because
it enables additional parameters relevant to galaxy evolution.
While many different model architectures could be used to match
the observed lines, we chose a plausible architecture with phys-
ical parameters distributed as power laws within each galaxy
because they likely represent physically meaningful internal dis-
tributions (Sect. 3.3.2).

In this section we stand by this hypothesis and investigate
what these distributions imply as far as galaxy evolution is con-
cerned. In other words, given the observations, given the grid
of 1D photoionization models, and given the assumption of
power-law distributions, we wish to find and interpret the most
likely internal distributions of physical parameters (Z, U, age,
n) within each galaxy of the sample. We show in Figure 11
the variation of the upper and lower boundaries as well as
average values as a function of metallicity discussed in the
following.
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5.2.1. Metallicity internal distribution

We first note that the power-law distribution inferred for any
given galaxy should not be confused with the metallicity gradi-
ent often observed in disk-dominated galaxies (e.g., Carton et al.
2015; Hu et al. 2018; Bresolin 2019; Simons et al. 2021; includ-
ing in the Milky Way, Balser et al. 2011) and thought to be the
result of star-formation spreading outward through the disk (e.g.,
Sharda et al. 2021, 2024). A positive or negative slope αZ in our
models does not correspond to the slope of the metallicity gradi-
ent (the latter considering radial averages that do not contribute
equally to the total emission) but reflects instead a given weight
of metal-rich versus metal-poor regions emission within a galaxy
toward global emission.

The inferred internal metallicity dispersion (∆Z = Zmax −

Zmin) reaches up to ∼0.7−1 dex around solar metallicity galaxies
(Fig. 11), which is compatible with the dispersion often observed
in 2D maps (e.g., Poetrodjojo et al. 2018; Nakajima et al. 2024).
However, it must be noted that robust 2D metallicity estimates
indicate that the abundance gradient should dominate the metal-
licity variation (e.g., Kreckel et al. 2019; Williams et al. 2022)
and that our result may be the consequence of a 3D distribution
and the consequence of potentially larger weights from metal-
poor regions contributing to the total luminosity.

Our results for the ECO sample also show that Zmin and Zmax
do not evolve the same way as a function of Zavg (Fig. 11). We
identify 4 regimes based on the metallicity dispersion ∆Z, most
evident in the inference runs using the [S ii] lines:
1) Smooth increase of ∆Z until ≈1/3 Z� by a factor of ≈2, with

little dispersion across galaxies.
2) Sharp increase between ≈1/3 Z� and ≈1/2 Z� by a factor of
≈4, with a large dispersion across galaxies.

3) Turnoff until super-solar metallicity galaxies.
4) Sharp decrease until ≈2.5−3 Z� by a factor of ≈10 (only seen

if using [S ii] lines as constraints).
We emphasize that the small difference between Zmin and Zmax
in low-metallicity galaxies is a direct result of the inference:
other solutions may exist (such as a wide range of metallicity
within galaxies together with a very low αZ), but their likelihood
is significantly lower. Furthermore, the trend observed for the
metallicity dispersion to be small for either the lowest or high-
est metallicity galaxies is not due to potential edge effects as we
do not observe the same behavior for the boundaries of other
parameters as a function of the corresponding average parameter
value.

In metal-poor galaxies, the small metallicity dispersion
implies that the existence of numerous metal-rich regions in low-
Z galaxies is unlikely. The relatively slow evolution of Zmin may
indicate that metal-poor (.1/3 Z�) gas remains present in metal-
rich galaxies until at least an average metallicity about solar, but
in the form of regions that do not contribute much to the total
emission (αZ > 0). Inversely, the small dispersion inferred for
the most metal-rich galaxies is only seen for inference runs using
[S ii] and seems in contradiction with the evidence of relatively
metal-poor regions in metal-rich galaxies (e.g., Poetrodjojo et al.
2018). The inference runs ignoring [S ii] do predict a relatively
large dispersion instead.

Assuming that the sample at z ∼ 0 may capture the evolu-
tion of galaxies versus Z (i.e., assuming a closed-box scenario
for which the average metallicity increases monotonously with
time and also assuming that metal-poor galaxies are past ver-
sions of metal-rich ones), the fact that Zmax increases relatively
faster (factor of ≈10 between ≈1/3 and ≈1/2 Z�) than Zmin might
indicate a faster enrichment of metal-rich regions. One possible

interpretation, assuming that the average Z traces an evolution-
ary pathway, is that
1) Galaxies start forming stars in a gas whose metallicity is rel-

atively uniform and metal-poor (average metallicity below
.1/5 Z�),

2) Star-formation is slightly more efficient in regions already
enriched in heavy elements (e.g., due to increased cooling)
leading to an increasing offset between the maximum and
minimum metallicity within the galaxy and to the average
metallicity of the galaxy being driven by metal-rich regions,

3) The enrichment of the most metal-rich regions eventually
plateaus around solar metallicity, which could be due to the
fact that the added metal mass released through a typical star-
formation episode becomes small compared to the existing
metal content.

A symmetric behavior is observed for Zmin and Zmax, with two
reference metallicity thresholds: 1/3 Z� corresponding to a sharp
increase in the metal enrichment, and ∼Z� corresponding to a
saturation in enrichment.

5.2.2. Internal distribution of other parameters

The ionization parameter dispersion within galaxies (Umax −

Umin) is the largest within the most metal-poor galaxies and
decreases sharply until ∼1/2 Z� (Fig. 11). Since the density
boundaries do not evolve much versus Z, the wide range of U
in metal-poor galaxies could be due to a wide range of the ion-
izing photon flux and/or the distance between the stars and the
illuminated gas shells. We remark that the lower boundary drives
the average ionization parameter (due to the negative slope αU
(Sect. 4.4.1).

There is no clear evolution of the density boundaries versus
Z apart from a slight decrease of both boundaries. As a con-
sequence, there is also little evolution of the density dispersion
(nmax−nmin). The age boundaries tightly follow each other versus
Z and, as a consequence, the difference depends relatively little
on Z.

5.3. On a potential metallicity bimodality

We find a bimodal distribution of the average metallicity Zavg
in the galaxies of the ECO sample when using all available
lines (Fig. 9). The low-metallicity probability peak, where most
galaxies lie, is centered around 12 + log(O/H) ≈ 8.25 (≈0.3 Z�)
and the high-metallicity peak reaches up to 12 + log(O/H) ≈
9.0. However, if [S ii] lines are ignored for the inference (for
the LOC approach or single 1D model alike), the bimodal-
ity is much weaker and the secondary peak lies around the
solar value. The bimodality is driven by the upper bound-
ary Zmax (Sect. 4.4.1), while the lower boundary Zmin hardly
seems to reach the metallicity threshold for rapid enrichment
(Sect. 5.2.1).

The N2S2 empirical diagnostic (Dopita et al. 2016) provides
a significantly smoother PDF (Fig. A.1) and provides metallici-
ties as low as ≈1/30 Z� while the metallicity we infer does not
reach below 1/10 Z�. We emphasize that the lines involved in the
N2S2 diagnostic are not particularly well reproduced by the vari-
ous models we consider and that the difference seen for the PDFs
may be partly due to the inability of the models to reproduce
better [S ii] and/or to systematic effects in the line measurement
available in the SDSS catalogs (Sect. 4.1). It also shows that the
bimodality in Z, if real, may be difficult to identify solely based
on empirical diagnostics.
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Fig. 11. Evolution of the parameter boundaries pmin,max versus the average metallicity Zavg for the three inference runs (including [S ii] on top,
ignoring [S ii] in the middle, and replacing [S ii] by [O ii] in the bottom). For each run, the upper row shows pmin,max in blue and red respectively
(with the gray rectangles showing the full parameter range in the grid), while the bottom row shows the difference between pmax − pmin.

We tested inference runs with different underlying pho-
toionization grids and including the [S ii] lines: BOND
(Vale Asari et al. 2016) and SFGX (Ramambason et al. 2022).
Although not shown, the PDFs from SFGX and from the present
grid are similar and both show a bimodality. The bimodality is
more pronounced with the present grid because the maximum

metallicity in SFGX is only 0.1 log solar. BOND does reach
higher values but does not show any bimodality, and in fact
provides similar results to the N2S2 calibration. We conclude
that the Z bimodality is mostly driven by the grid presently used
and the underlying abundance patterns that are assumed (similar
prescription in the current grid and SFGX, mostly drawn from
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Nicholls et al. 2017). Ignoring the [S ii] lines in the inference
somewhat mitigates these issues, implying that the bimodality,
if real, is likely not a strong one.

For completeness, although the present sample was selected
to be compatible with star-forming criteria and negligible AGN
contamination (Sect. 3.1), we cannot exclude that high-Z galax-
ies may correspond to sources with a contribution from ion-
ization mechanisms other than UV photoionization from mas-
sive stars (e.g., shocks and/or AGN). In fact, the high-Z sample
is partly populated with “ambiguous” galaxies lying between
the SF-AGN demarcation lines of Kauffmann et al. (2003) and
Stasińska et al. (2006) and may therefore imply weak AGN con-
tamination (see Fig. 3 and Appendix A). The interpretation
of a potential metallicity bimodality in star-forming galaxies
therefore depends heavily on the maximum AGN contamination
allowed, especially if one considers that nuclear activity might
never be null. Nevertheless, we do note that the “ambiguous”
galaxies remain far off the AGN domain in the [O i] diagnostic
plot (Fig. 3).

5.4. Mass-metallicity relationship

The ECO star-forming galaxy sample provides an opportunity
to study the mass-metallicity relationship (MZR; see review
in Maiolino & Mannucci 2019) in a consistent way for a wide
range of galaxy mass. We use the metallicity inferred in the
present study and the stellar mass is taken from Hutchens et al.
(2023).

Figure 12 shows that the MZR is smooth and narrow until
stellar masses 109 M�, but there is a large spread of metallici-
ties in the range 109.5−10 M�, which eventually leads to a high-
metallicity plateau for the most massive galaxies. The Z and
M∗ PDFs are remarkably different, the former being somewhat
bimodal (Sect. 5.3) and the latter showing a single-peak broad
distribution.

The main result shows that the inferred MZR in the low-mass
regime (.109.5 M�, i.e., the bulk of the ECO sample) is compat-
ible with the low-mass galaxy fit in Indahl et al. (2021), which
uses the robust direct method (Te-method with calibrated ion-
ization correction factors; see also Berg et al. 2012; Kirby et al.
2013). This agreement with Indahl et al. (2021) as well as with
stellar abundances in Maiolino & Mannucci (2019) suggests that
the inferred metallicity (i.e., using photoionization models and
strong lines) are reliable. Figure 13 (left panel) shows that the
low-mass fit remains unchanged whether [S ii] lines are used as
constraints or not. Figure 13 (right panel) shows that the MZR in
the low-mass regime using the empirical N2S2 diagnostic agrees
less well with Indahl et al. (2021), suggesting that the [S ii] line
measurement may lead to systematics (Sect. 4.1).

Concerning high-mass galaxies (&109.5 M�), we find signif-
icant lower metallicities than both Tremonti et al. (2004) and
Mingozzi et al. (2020), the latter studies using strong lines and
the theoretical method (stellar population + photoionization
grids). We argue that this may be a consequence of ignoring
the [S ii] lines for inference in the present study, as including
these lines results in significantly higher metallicities (Fig. 13
left panel), at the expense of a strong metallicity bimodality.
Our fit for high-mass galaxies ignoring [S ii] lines is in line with
the study of Andrews & Martini (2013) which uses the direct
method on stacks, strengthening the reliability of our inferred
metallicity across the full mass range.

In summary, the MZR we infer without [S ii] lines is in line
with studies using the direct method from the calibrated range
up to methods using stacks, hinting that our models are able

Fig. 12. Metallicity-mass relationship using the metallicity inferred
ignoring the [S ii] lines. The thick gray curve shows the 4th order poly-
nomial fit (see text). The blue, red, and green curves show the cor-
relations from Andrews & Martini (2013), Tremonti et al. (2004), and
Mingozzi et al. (2020) respectively, while the bottom and top stripes
show the low-mass galaxy fit and the SDSS star-forming galaxy fit from
Indahl et al. (2021) respectively. The dashed line shows the extrapola-
tion from Indahl et al. (2021).

to capture the physical conditions of the gas. Our sample was
indeed selected to ensure sufficient S/N in the strongest lines but
we did not consider Te-sensitive auroral lines (Sect. 3.1). Among
these, the [O iii] λ4363 line is detected in only ≈17% and ≈7% of
the sample above 2σ and 3σ respectively. Nevertheless, we have
verified that the model predictions for this line (i.e., not using it
for inference) agree within 2σ for the galaxies with detections.
We also verified that using it for the inference does not modify
our results across the mass and metallicity ranges.

The fourth order polynomial fit, valid in the range log M∗ =
[8.25, 10.5], provides

12 + log(O/H) ≈ −0.035756M4
∗+1.25737M3

∗ − 16.4913M2
∗

+ 95.9941M∗ − 201.99. (10)

The MZR is often reported in the literature to show a
transition between a positive correlation to an almost con-
stant metallicity, thought to be the consequence of galactic out-
flow efficiency versus galaxy mass (e.g., Tremonti et al. 2004;
De Vis et al. 2019), i.e., with no gap or sharp transition between
two metallicities. A bimodality in galaxy parameters is, how-
ever, known to exist between blue star-forming disks and red
spheroids dominated by old stellar populations, with a mass
transition ≈1010.5 M� and has been attributed to cold flows and
shock heated streams (e.g., Dekel & Birnboim 2008). Various
studies have proposed “inverse” morphological transformations
(from early- to late-type) through a disk regrowth process pos-
sibly enabled by gas accretion, which may explain the exis-
tence of non-cluster “blue-sequence” E/S0 galaxy population as
well as extended UV emission around some early-type galax-
ies (see, e.g., Stark et al. 2013; Moffett et al. 2015). This led
Kannappan et al. (2013) to hypothesize that the transition is due
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Fig. 13. Metallicity-mass relationship using the metallicity inferred with MULTIGRIS including [S ii] lines (left) and using the metallicity calcu-
lated from N2S2 empirical calibration (right).

to a different refueling regime with high levels of external gas
accretion and stellar mass growth. The “blue-sequence” E/S0
galaxy population a population exists primarily below a stellar
mass of ∼109.7−10.5 M� and corresponds well to the masses for
which the average metallicity we infer increases sharply, poten-
tially suggesting a higher star-formation efficiency. The present
results unfortunately do not allow us to distinguish between a
higher star-formation efficiency due to external processes (accre-
tion) or internal processes (metallicity threshold; Sect. 5.2.1).

6. Conclusions

We present models of star-forming galaxies from the volume-
limited ECO catalog. The main objective is to interpret real-
istic models of an unbiased sample in order to probe relation-
ships between physical parameters, in particular as a function
of metallicity, but also to investigate the metallicity probability
density function itself and to recover the internal distribution of
physical parameters within galaxies. In summary:

– We designed a framework using probabilistic methods in
order to assess various model architectures meant to describe
the emitting components of a galaxy. In particular, we con-
sidered the combination of many 1D models, that is, the LOC
hypothesis. LOC architectures integrate a number of models
with different physical properties linked by a given distribu-
tion (e.g., a power law) whose parameters are found through
inference.

– We applied this framework to the ECO star-forming galaxy
sample. We focused on a few model architectures, including
a single 1D model approach for comparison. The 1D models,
used as single models or within an LOC combination, were
computed with Cloudy with specific abundance patterns as a
function of metallicity and we made use of the stellar popu-
lation synthesis code BPASS.

– Guided by potential issues with the line measurements as
well as with the model hypotheses, we performed runs ignor-
ing [S ii], which globally performed much better and allevi-
ated some issues with [N ii] and [O i] predictions.

The main results are as follows:
1. Globally, we find that the LOC models outperform the sin-

gle 1D models, strengthening the need for relatively com-
plex and realistic architectures. The single 1D models pro-
vide values for physical parameters that are close to the aver-
age value considering a distribution of components (LOC) –
which we consider robust – despite the small biases observed
and discussed.

2. For LOC models, the average physical parameter value in
a galaxy is always tightly constrained. Other distribution
hyperparameters (the slope and boundaries) are much less
well constrained but do show small deviations from galaxy
to galaxy and with respect to the prior, suggesting that it is
possible and meaningful to study these variations for a phys-
ical interpretation.

3. We find, in particular, that the integrated emission of galaxies
is dominated by relatively low-excitation gas, with an aver-
age U ∼ −3.2. The age distribution peaks around 5 Myr,
with the lower and upper boundary around 2 and 10−20 Myr,
respectively.

4. The average metallicity shows a weakly bimodal distribu-
tion, with most galaxies showing an average metallicity of
∼0.3 Z� and a secondary peak around solar metallicity.

5. The lower and upper metallicity boundaries within galaxies do
not evolve the same way as a function of the average metal-
licity. In the most metal-poor galaxies, most emitting com-
ponents have the same metallicity within a factor of 2−3. As
the metallicity increases until about solar values, the most
metal-rich regions increase their metallicity sharply while
low-metallicity regions remain constant, resulting in a metal-
licity dispersion up to a factor 5−10. For super-solar metallic-
ity galaxies, the most metal-poor regions finally get enriched.
We propose that this reflects an evolutionary sequence involv-
ing a combination of metallicity thresholds for efficient star
formation (≈1/3 Z�) and saturation (≈Z�).

6. The average metallicity bimodality is driven by the upper
boundary Zmax and the secondary peak could be a consequence
of efficient or rapid enrichment of the most metal-rich regions.
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7. We find correlations between all parameters (age, ionization
parameter, and – though to a lesser extent – density) ver-
sus Z, with the lowest metallicity galaxies having a younger
age, higher density, and higher ionization parameter. We
find, however, a flattening of age and U for galaxies above
∼ 0.5 Z�.

8. Finally, we examined the MZR and find results in line with
direct abundance method determinations, from the calibrated
range at a low metallicity to methods using stacks at a high
metallicity. This suggests that the models are able to capture
physical conditions of the gas and that the inferred metal-
licity is reliable. We identified two regimes, the low-mass
regime below ∼109.5 M�, reproducing the low-mass galaxy
fit from Indahl et al. (2021), and a sharp metallicity increase
for more massive galaxies. This transition may be related to
a specific refueling of non-cluster early-type galaxies but we
cannot exclude purely internal processes such as a metallic-
ity threshold for efficient star formation.
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Fig. A.1. Left: average metallicity PDF including the N2S2 and N2O2 calibrations from Garg et al. (2024). Right: same as left plot but using the
star-formation / AGN demarcation line of Stasińska et al. (2006) instead of Kauffmann et al. (2003).

Fig. A.2. N2S2 (black) and N2O2 (red) empirical diagnostics versus the inferred (average) metallicity for the LOC architecture using [S ii] lines
(left) or ignoring them (right).

Appendix A: Empirical metallicity diagnostics and star-formation / AGN demarcation line

Figure A.1 shows the metallicity distribution inferred through various model architectures compared to the metallicity calculated
from empirical diagnostics (N2S2 and N2O2). The N2S2 diagnostic is discussed in Sect. 5.3. The N2O2 diagnostic suffers from the
weak statistics due to the low S/N in the [O ii] line for most of the sample. Figure A.2 illustrates how the metallicity we infer differs
from the N2S2 and N2O2 empirical diagnostics.

The sample used in this study was drawn from the ECO catalog, selecting only star-forming galaxies (Sect. 3.1). As explained in
the main text, the exact choice of the demarcation line between gas excitation dominated by star-formation or not has some impact
on the results. Stasińska et al. (2006) provided an updated demarcation compared to Kauffmann et al. (2003) to account for galaxies
with weak AGN contribution (typically . 3%). We have verified that the results presented in this study remain unchanged whatever
the choice of the demarcation (in other words including or not galaxies with potentially weak AGN contributions). Most galaxies
falling between the two demarcation lines are high-metallicity galaxies (Fig. 3) and the main impact of using the demarcation from
Stasińska et al. (2006) instead of Kauffmann et al. (2003) is to reduce the statistics of the high-Z galaxies in the various plots, with
no change to the actual trends. Unsurprisingly, the only diagnostic plot which changes significantly is the metallicity PDF itself.
Results in Section 5.3 use the demarcation from Kauffmann et al. (2003) and indicate a potential secondary high-Z “peak” (highly
populated if using [S ii] lines for inference, weakly populated if ignoring [S ii]). When using Stasińska et al. (2006) instead, we see
that the secondary peak is much smaller (Fig. A.1).

Appendix B: Results for individual galaxies

Figure B.1 shows that the inferred average parameter values for each individual galaxy show no significant correlations or degener-
acy within the confidence intervals. The inference method in MULTIGRIS makes use of the Sequential Monte-Carlo method from
python package PyMC (Salvatier et al. 2016), which is well adapted to complex, potentially multimodal posterior distributions (see
Lebouteiller & Ramambason 2022). We have used the largest possible number of particles to alleviate issues with minor modes
being cropped.
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Fig. B.1. Illustration of the pairwise relationships between the inferred average parameter values for a low-metallicity source, illustrating that the
posterior distributions do not show strong correlations.

Examples of inference results for individual galaxies are shown in Figure B.2. The average U and Z values within any galaxy
(defined in Eqn. 5) are generally well constrained, and some boundaries (e.g., upper boundary Umax) are relatively uncertain. How-
ever, it is worth noting that there is often minimal overlap between the lower and upper boundaries for each parameter, reflecting the
fact that, given the choice between a single valued parameter or an LOC distribution, the latter is always preferred and thus likely
to represent a more realistic model architecture.

Figure B.3 shows the parameter distribution for each galaxy (not to be confused with the parameter distribution of the average
values, shown in Fig. 9). This figure shows that the PDF of some parameters is driven by the actual variation between galaxies (e.g.,
average metallicity) while the PDF of some other parameters is somewhat driven by a similar PDF inferred for all galaxies (e.g.,
age dispersion).
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Fig. B.2. Illustration of inferred power-law distributions for typical subsolar metallicity (on top) and super-solar metallicity (on bottom) galaxies.
For each metallicity case we show the individual draws for the integration weight (Φ(p); Eqn. 2) on top and the PDF for the lower and upper
boundaries for integration (pmin,max; gray) and the average parameter value (pavg; red) the bottom).

A31, page 22 of 23



Lebouteiller, V., et al.: A&A, 695, A31 (2025)

Fig. B.3. Illustration of the parameter distribution for each individual galaxy (here LOC approach ignoring [S ii] lines; see Sect. 4.1). Each indi-
vidual curve represents the PDF of a single galaxy. We plot the lower and upper boundaries in different colors for clarity.
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