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Abstract

We present a z= 0 census of nuggets—compact galaxies that form via gas-rich violent disk instability—within the
luminosity- and volume-limited RESOLVED Spectroscopy Of a Local VolumE (RESOLVE) and Environmental
COntext (ECO) surveys. We use random forest (RF) models to predict near-ultraviolet (NUV) magnitudes for ECO
galaxies that lack high-quality NUV magnitudes, thereby doubling the number of ECO galaxies with reliable
extinction-corrected star formation rates (SFRs) and red/green/blue classifications based on specific SFRs
(sSFRs). The resulting RF-enhanced RESOLVE+ECO nugget sample allows us to analyze rare subpopulations—
green nuggets and nuggets with active galactic nuclei (AGN)—likely associated with quenching. Green nuggets
are more similar to red nuggets than to blue nuggets in halo mass (Mhalo) distribution, with both red and green
nuggets being found mainly at Mhalo� 1011.4Me, where permanent halo quenching is predicted. At these masses,

the AGN frequency for green nuggets is higher (48.2%-5.3%
5.3% ) than for either blue (39.2%-2.8%

2.9% ) or red (29.3%-2.8%
3.0% )

nuggets. Between Mhalo = 1011.4–1012Me, at the onset of permanent quenching, the AGN frequency for green
nuggets is nearly double the frequency for blue or red nuggets, implying AGN are associated with this transition.
At Mhalo < 1011.4Me, where temporary cyclic quenching is expected, the AGN frequency for blue nuggets

(7.5%-1.2%
1.4% ) is lower than for either green (31.3%-7.5%

8.7% ) or red (18.8%-7.8%
11.5% ) nuggets. At all masses, nuggets with

AGN have reduced sSFRs and likely also atomic gas content compared to nuggets without AGN, but the
quenching is more extreme below Mhalo = 1011.4Me.

Unified Astronomy Thesaurus concepts: Galaxy bulges (578); Galaxy evolution (594); Galaxy quenching (2040);
Compact dwarf galaxies (281); Blue compact dwarf galaxies (165); Random Forests (1935); Early-type galaxies
(429); Active galactic nuclei (16)

1. Introduction

Dense galaxies formed by gas-rich compaction events, also
known as nuggets, represent key evolutionary phases that have
helped shape the local bulged galaxy population. They were
first discovered as quiescent objects, known as red nuggets, at
redshift z > 1.6 (A. Cimatti et al. 2004; I. Trujillo et al. 2006;
P. G. van Dokkum et al. 2008). Subsequently, G. Barro et al.
(2013) was able to identify a high-z population of star-forming
nuggets, known as blue nuggets, as their likely progenitors.
Shortly after, a toy model by A. Dekel & A. Burkert (2014)
suggested how nuggets fit into the galaxy evolution picture. In
this model, blue nuggets form via compaction events, which
are defined by gas-rich violent disk instabilities driven by wet
mergers or colliding gas streams. The blue nuggets then quench
into red nuggets through a combination of halo quenching and
internal quenching mechanisms. After this transition, A. Dekel
& A. Burkert (2014) suggest that red nuggets become massive
ellipticals through mostly minor mergers and satellite accretion.
Building on this picture, I. G. de la Rosa et al. (2016) studied
the z ∼ 0.1 bulged galaxy population and the z ∼ 1.5 nugget
population and concluded that nuggets are primordial seeds not

only for massive ellipticals but also for lenticular galaxies and
classical bulged spirals (see also Y. Gao & L.-L. Fan 2020).
Thus, understanding present-day spheroids requires under-
standing nuggets.
Nuggets are rare in the local Universe, which makes them

challenging to study robustly. Observations of the evolution of
massive (M* > 1010Me) nuggets in the high-z Universe show
that nuggets of similar mass and density become less common
over cosmic time (G. Barro et al. 2013; I. Damjanov et al.
2014; A. Charbonnier et al. 2017). At z= 0, C. Saulder et al.
(2015) searched for massive red nuggets with low effective
radii and elevated velocity dispersions, and identified only
76 candidates within a parent Sloan Digital Sky Survey (SDSS)
sample of >230,000 (0.03%). That said, dwarf nuggets may
still be forming today. M. L. Palumbo et al. (2020) performed a
dedicated search for compact dwarf starburst galaxies with
properties consistent with blue nuggets, and found that ∼5% of
all dwarf galaxies are candidate blue nuggets, roughly
matching theoretical expectations from the toy model of
A. Dekel & A. Burkert (2014).
At low z, nuggets are expected to quench permanently over a

range in halo mass from Mhalo ∼ 1011.4Me to Mhalo ∼ 1012.1Me

due to shock heating of cosmic gas (e.g., A. Zolotov et al.
2015). Virial shocks that can significantly suppress cold-gas
accretion are theorized to form in the inner halo above
Mhalo ∼ 1011.4Me and to become pervasive out to the virial
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radius aboveMhalo ∼ 1012.1Me (A. Dekel & Y. Birnboim 2006;

A. Zolotov et al. 2015). These two halo masses are herein

labeled the threshold scale and bimodality scale, respectively

(S. J. Kannappan et al. 2013). Via the stellar mass–halo mass

relation (e.g., K. D. Eckert et al. 2016), the corresponding

central galaxies have stellar masses M* ∼ 109.6 and 1010.5Me,

respectively. We note that the cosmic web geometry that

permits cold streams in higher-mass halos at high z does not

persist at low z (A. Dekel & Y. Birnboim 2006).
Below Mhalo ∼ 1011.4Me, in the dwarf galaxy regime,

A. Zolotov et al. (2015) and S. Tacchella et al. (2016) have

found that simulated nuggets cyclically quench due to

temporary gas depletion and outflows, resulting in ∼0.3 dex

oscillations on the star-forming main sequence. Using the

complete volume- and luminosity-limited REsolved Spectrosc-

opy Of a Local VolumE (RESOLVE) survey in D. S. Carr et al.

(2024, hereafter C24), we reported preliminary z ∼ 0 evidence

of cyclic quenching below the threshold scale through an

analysis of star formation activity in dwarf nuggets. We also

reported evidence of halo quenching above the threshold scale

based on the halo mass distributions of blue and red nuggets.

However, we could not confirm that the halo masses of nuggets

plausibly caught in the blue-to-red transition (also known as

green nuggets) closely match the halo masses of red nuggets,

with only 10 green nuggets in our sample. Additionally, we

would like to test whether green nuggets have intermediate

atomic gas-to-stellar mass (G/S) ratios suggestive of quenching
from blue to red.

Some studies have suggested that active galactic nuclei

(AGN) play a role in the blue-to-red nugget transition, although

their exact role is unclear. Most simulations that focus on

nuggets cannot assess AGN feedback as they do not incorporate

AGN physics (e.g., A. Zolotov et al. 2015; S. Tacchella et al.

2016; J. Primack et al. 2018); they only speculate that AGN

feedback plays a role in permanently quenching nuggets. In one

of the only studies to use simulations to assess the role of AGN

in quenching nuggets, J. Nogueira-Cavalcante et al. (2019)

compared green nuggets from hydrosimulations with green

nuggets from z ∼ 0.8 observations and concluded that green

nuggets quench faster than typical green valley galaxies due to

being in an efficient mode of AGN feedback.
Focusing on AGN statistics, G. Barro et al. (2013) found a

higher frequency of X-ray-detected AGN in z ∼ 2 blue nuggets

(∼30%) compared to extended blue galaxies (∼1%) where

both had stellar masses M* > 1010Me. The authors proposed

that AGN may help remove gas from nuggets after virial shock

heating shuts down cold accretion. Similarly, D. D. Kocevski

et al. (2017) found that massive (M* > 1010Me) blue nuggets

at z ∼ 2 are 4.7× and 7.6× times more likely to host an X-ray-

detected AGN than red nuggets and extended blue galaxies,

respectively. They argued that AGN likely contribute to the

feedback energy required to produce the short quenching

timescale observed for nuggets (∼0.5 Gyr; G. Barro et al.

2013). While these studies find a role for AGN in (massive)

blue and red nuggets, they do not probe the AGN frequency in

green nuggets relative to red and blue nuggets, which would

clarify whether AGN actually coincide with the moment of

transition. The z= 0 nugget sample of C24 included green

nuggets, but only eight above the threshold scale, yielding a

green nugget AGN frequency consistent with both the red and

the blue nugget AGN frequencies within the uncertainties,

despite the blue nugget AGN frequency being ∼2× higher than
the red nugget AGN frequency.
Below the threshold scale, the role of AGN in nugget

quenching has received little attention. S. Tacchella et al. (2016)
found that cyclic quenching in this regime is driven by
compaction cycles where first gas inflow exceeds depletion/
outflows, then the reverse occurs. However, they could only
track outflows from star formation feedback. Despite their
simulations not incorporating AGN, A. Zolotov et al. (2015)
speculated that AGN feedback is likely associated with blue
nuggets at all masses and may help boost internal quenching in
nuggets. We studied nuggets in the cyclic quenching regime
in C24, but our sample had only four nuggets with AGN below
the threshold scale (one blue, one green, two red), too few to
probe the role of AGN in temporary quenching. Evidence of
AGN feedback in non-nugget dwarf galaxies has been found in
several studies (e.g., G. Dashyan et al. 2018; S. J. Penny et al.
2018; C. M. Manzano-King et al. 2019), so an exploration of
AGN quenching in dwarf nuggets is warranted. However, with
AGN detections being uncommon in dwarf galaxies (∼5%–20%
of dwarfs host AGN; M. S. Polimera et al. 2022; M. Mezcua &
H. D. Sánchez 2024), a larger nugget census than in C24 is
needed to probe the dwarf nugget AGN regime.
The present study aims to develop a larger parent sample

capable of answering the above open questions. The Environ-
mental COntext (ECO) survey, a survey ∼8× larger than the
RESOLVE survey we used for C24 yet similarly designed, is a
logical starting point. However, the analysis of RESOLVE
nuggets was contingent on classifying nuggets as blue/green/
red based on extinction-corrected star formation rates (SFRs)
derived from custom-processed deep (exposure time > 1000 s)
Galaxy Evolution Explorer (GALEX) near-ultraviolet (NUV)
imaging (K. D. Eckert et al. 2016, tabulated in Z. L. Hutchens
et al. 2023). Unfortunately, deep GALEX NUV imaging does
not exist for roughly half of the ECO footprint, and high-
quality NUV magnitudes are necessary for generating accurate
SFRs (see Section 3.1). That said, nearly all of ECO does have
shallower GALEX NUV photometry, typically from the All-
Sky Imaging Survey (AIS; P. Morrissey et al. 2007). If we can
use machine learning that has been calibrated using the half of
ECO with high-quality custom-processed NUV photometry to
predict NUV magnitudes for the other portion of ECO without

such data, then we can use all of the ECO survey for our nugget
analysis.
In this work, we train random forest (RF) regression models

to fill in the missing NUV data, enabling us to create a merged
RESOLVE+ECO census of 1082 nuggets within a parent
sample of 10,018 galaxies to probe AGN and halo quenching in
nuggets. We use this enhanced data set to answer three
questions:

1. Are the halo mass and G/S distributions of green nuggets
consistent with their being nuggets caught in the process
of halo quenching?

2. Above the threshold scale (Mhalo > 1011.4Me), can AGN
be linked to the permanent blue-to-red nugget transition?

3. Below the threshold scale, can AGN be linked to
temporary quenching in nuggets?

In this study, we use a standard ΛCDM cosmology with
Ωm = 0.3, ΩΛ = 0.7 and H0 = 70 km s−1Mpc−1 except where
noted otherwise.
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2. Data and Methods

2.1. RESOLVE and ECO

The RESOLVE survey is a ∼53,000Mpc3 volume- and
luminosity-limited census of galaxies that is highly complete down
to the dwarf regime just above M* ∼ 109Me (S. J. Kannappan &
L. H. Wei 2008; K. D. Eckert et al. 2016). RESOLVE spans two
equatorial strips that create two subvolumes, RESOLVE-A and
RESOLVE-B, both limited by group redshift 4500–7000 km s−1.
RESOLVE-A spans R.A. 8.75–15.75 hr and decl. 0°–5°, while
RESOLVE-B spans R.A. 22–3 hr and decl. −1.25 to + 1.25. For
nugget analysis, we refer to the same version of the RESOLVE
survey as used by C24: RESOLVE-A was cut off at the luminosity
completeness limit of Mr = −17.33 matching ECO, while
RESOLVE-B was cut off at Mr = −17.00 (see K. D. Eckert
et al. 2015). The full volume- and luminosity-limited RESOLVE
parent survey contains 1453 galaxies. For machine learning
development and calibration, we only use RESOLVE-A because
RESOLVE-A is a subset of ECO. RESOLVE-A contains 959
galaxies.

The ECO survey is a >400,000Mpc3 volume- and luminosity-
limited survey that is similar in design to RESOLVE, except it is
constructed with mostly archival data (A. J. Moffett et al. 2015;
K. D. Eckert et al. 2016; Z. L. Hutchens et al. 2023). ECO
naturally overlaps with the A-semester footprint of RESOLVE and
adopts RESOLVE parameters for galaxies in both surveys, but it is
much larger on-sky (R.A. 8.7 hr to 15.82 hr and decl. −1°–50°)
and somewhat larger in group redshift range (3000–7000 km s−1).
ECO is also complete down to Mr = −17.33. The luminosity-
limited parent ECO survey contains 9640 galaxies.

2.2. Custom Photometry

RESOLVE and ECO both use custom-processed multiwave-
length photometry from K. D. Eckert et al. (2015), A. J. Moffett
et al. (2015), and K. D. Eckert et al. (2016), tabulated and updated
in Z. L. Hutchens et al. (2023). The magnitude extrapolation
estimated total galaxy magnitude by combining the flux in fixed
annuli that were created using gri coadded SDSS images, with
estimated flux from methods such as an outer-disk fit, curve of
growth (J. Munoz-Mateos et al. 2009), and an outer-disk color
correction (see K. D. Eckert et al. 2015 for more details). The
methods of K. D. Eckert et al. (2015) return brighter magnitudes
and bluer colors compared to SDSS catalog magnitudes. The
NUV imaging comes from the GALEX mission, so it did not
require background subtraction but still underwent magnitude
extrapolation via gri annuli. Only galaxies with a total NUV
exposure time >1000 s have custom-processed NUV photometry
from K. D. Eckert et al. (2015, 2016), so we have high-quality
NUV data for ∼97% of RESOLVE-A galaxies, ∼96%
of RESOLVE-B galaxies, and ∼45% of ECO galaxies. While
RESOLVE and ECO have very similar photometric processing
methods, RESOLVE has slightly better photometry due to by-eye
inspection of the data for each galaxy. More details on the custom-
processed photometry pipeline can be found in K. D. Eckert et al.
(2015). We refer to various NUV magnitude estimates throughout
this study, so we provide a glossary for each NUV term in
Table 1. Conversion between m and M uses the equation

( ) ( )= - +m M D5 5 log , 1L

where the luminosity distance, DL, is the line-of-sight comoving

distance in megaparsecs, loscmvgdist, times (1+cz/c)
based on Z. L. Hutchens et al. (2023).

2.3. Structural Parameters

Our approach uses seeing-deconvolved effective radii, Re, to
identify intrinsically small objects. C24 used PyProFit, a profile-
fitting algorithm, to obtain Re for RESOLVE galaxies. Roughly
90% of RESOLVE galaxies have successful PyProFit models,
while the other ∼10% have Re values from nondeconvolved fitting
(K. D. Eckert et al. 2015). We use effective radii from the Dark
Energy Camera Legacy Survey (DECaLS) Data Release 9 (A. Dey
et al. 2019) for ECO. DECaLS provides seeing-deconvolved
Re values derived from light profile modeling via The Tractor
algorithm (D. Lang et al. 2016). C24 showed that DECaLS
Re values agree well with PyProFit Re values for RESOLVE
galaxies that have both Re estimates. Roughly 92% of ECO
galaxies have nonnull Re from DECaLS, and in the null cases we
used Re values from nondeconvolved fitting from the ECO
database (Z. L. Hutchens et al. 2023). Visual inspection of galaxies
with failed light profile fitting showed that they were typically
either early-stage mergers or faint irregular dwarfs, both of which
are difficult to fit with standard light profiles and fortunately
unlikely to overlap with nuggets. In these instances, we prefer to
use the photometric structural parameters of K. D. Eckert et al.
(2015; cataloged in Z. L. Hutchens et al. 2023) rather than
enforcing standard light profile models for galaxies with
nonstandard profiles. We have previously shown that the
nondeconvolved Re values agree well with the deconvolved values
except at very small Re, and that PyProFit and Tractor Re values are
consistent (see C24, Section 2.5 and Figures 2 and 3). All radii are
converted to units of kiloparsecs based on their Hubble distance
using recessional velocity cz as tabulated in Z. L. Hutchens et al.
(2023). We also use the μΔ parameter from S. J. Kannappan et al.
(2013), which acts as a quantitative morphological metric that has
been shown to discern between quasi-bulgeless, bulge+disk, and
bulge-dominated galaxies.

2.4. Environment Metrics

For this study, the environment metrics come mainly from
Z. L. Hutchens et al. (2023), which used a four-step group-finding
algorithm that results in higher completeness compared to typical
friends-of-friends algorithms, where completeness is defined as the
percentage of galaxies in the true group dark matter halo that the
algorithm finds in the best-matched identified group, as measured
using mock catalogs from simulations in which the true groups/
dark matter halos are known. Z. L. Hutchens et al. (2023) provided
group assignments, halo masses derived from halo abundance
matching, and central/satellite flags. We have also used a “flyby”
flag from C24 that identifies flyby galaxies as galaxies inside of a
halo with Mhalo < 1012Me and within 1.5 ×Rvir of a halo with
Mhalo� 1012Me.

2.5. Stellar Masses, Atomic Gas Masses, Star Formation Rates,
and Active Galactic Nuclei

For RESOLVE, stellar masses and extinction- and k-corrected
magnitudes (including NUV) are derived from spectral energy
distribution (SED)modeling (S. J. Kannappan & E. Gawiser 2007;
S. J. Kannappan et al. 2009, 2013). The SED model grid is built
using a Chabrier IMF (G. Chabrier 2003) and stellar population
models from G. Bruzual & S. Charlot (2003). We used a variant
of the S. J. Kannappan et al. (2013) modeling code adopted
by K. D. Eckert et al. (2015), which differs from S. J. Kannappan
et al. (2013) only in that it rejects middle-aged young populations
with ages �1.4Gyr (K. D. Eckert et al. 2017).
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ECO also has internal and foreground extinction- and
k-corrected magnitudes and stellar masses derived from the same
SED modeling as performed for RESOLVE. In this study, we
reran the SED modeling using RF mNUV wherever a custom-
processed mNUV was unavailable, with RF mNUV coming from a
RF machine trained on the available custom-processed NUV in
Z. L. Hutchens et al. (2023). The RF algorithms are explained at
length in Section 3. When rerunning the SED algorithm using
RF-predicted magnitudes or GALEX pipeline magnitudes, we
used a fixed NUV uncertainty of ∼0.14 mag to allow for random
and systematic uncertainties typical of GALEX NUV photo-
metry. We note that for galaxies which do have GALEX NUV
data, the NUV uncertainty does not depend strongly or
monotonically on magnitude, suggesting that a fixed uncertainty
is a reasonable approximation. This new SED modeling does
return new stellar mass estimates and corrected magnitudes, a few
of which we tabulate in Section 3.3 for future reference, but we
only need the corrected NUV. Our analysis does employ stellar
masses, but we have chosen to use the stellar masses provided in
Z. L. Hutchens et al. (2023) for consistency with all other
parameters within ECO Data Release 3 (DR3). We have

confirmed that stellar masses derived from SED modeling that
use RF mNUV are consistent with stellar masses for the same
subset of galaxies as tabulated in ECO DR3 (Z. L. Hutchens et al.
2023): The median stellar mass offset between the two sets of
stellar masses is 0.01 dex. Additionally, 97% of the stellar masses
derived from SED modeling in this work are within 0.15 dex of
their stellar mass in Z. L. Hutchens et al. (2023) (i.e., within the
typical stellar mass uncertainty) and 99.5% are within 0.25 dex.
Following SED modeling, SFRs were calculated for ECO

and RESOLVE using both the new internal extinction-
corrected NUV magnitudes and mid-IR W3+W4 magnitudes
from the Wide-field Infrared Survey Explorer (WISE) as
described in M. S. Polimera et al. (2025, in preparation). The
NUV and W3+W4 bands are used to compute a nondusty SFR
(prescription from S. M. Wilkins et al. 2012) and dusty SFR
(prescription from T. Jarrett et al. 2012), respectively. These
SFRs were then combined to infer a total SFR following
V. Buat et al. (2011).
We also use H I gas masses to compute G/S ratios. Gas

masses for RESOLVE were previously derived from non-flux-
limited, single-pointing 21 cm line data from the Arecibo and

Table 1

NUV Magnitude Glossary

Terminology Description

mband Apparent magnitude of band. When referring to magnitudes directly taken from the ECO/GALEX pipeline or magnitudes that are

used as inputs to SED fitting, we typically use mband. The SED-fitting code applies foreground extinction corrections before

fitting.

Mband Absolute magnitude of band, calculated from mband using luminosity distance. In this study, absolute magnitudes are k-corrected

and corrected for foreground Milky Way extinction. When referring to magnitudes used as features in our random forest models,

we use Mband. We may also convert mband either directly from the GALEX/ECO database or from SED-fitting outputs to Mband

for comparison purposes.

Custom-processed magnitudes Magnitudes from photometry as described in K. D. Eckert et al. (2015, 2016) and Z. L. Hutchens et al. (2023). These estimates are

used as an input to the SED-fitting algorithm, as described in Section 2.5.

Corrected magnitudes Magnitudes that are internal extinction corrected in addition to the usual foreground extinction and k-corrections. These estimates

are derived from our SED modeling and, for NUV, are directly used to compute corrected SFRs, as described in Section 2.5.

Shallow GALEX NUV magnitude mNUV from GALEX database with the highest exposure time <1000 s. These magnitudes are converted to MNUV

and used as inputs to the shallow and shallow+deep random forest models.

Deep GALEX NUV magnitude mNUV from GALEX database with the highest exposure time �1000 s. These magnitudes are converted to MNUV

and used as inputs to the deep and shallow+deep random forest models.

GALEX pipeline magnitudes Umbrella term for either shallow or deep GALEX mNUV or MNUV taken from the GALEX database without custom processing.

Shallow-predicted MNUV MNUV predicted using the shallow random forest model.

Deep-predicted MNUV MNUV predicted using the deep random forest model.

Shallow+deep-predicted MNUV MNUV predicted using the shallow+deep random forest model.

No-GALEX-predicted MNUV MNUV predicted using the no-GALEX random forest model.

RF MNUV An umbrella term forMNUV predicted by any of our random forest (RF) models, as described in Section 3. These values come from

RF models trained to predict custom-processed MNUV and may, depending on the model, use GALEX pipeline MNUV as an

input feature.

RF-corrected MNUV or mNUV Similar to corrected MNUV but where RF MNUV is converted to mNUV and used as an input for SED modeling in place of missing

custom-processed MNUV. Our analysis uses these corrected magnitudes to create internal extinction-corrected SFRs for galaxies

that lack corrected MNUV from custom-processed data.

SED-output MNUV or mNUV NUV magnitudes derived from SED modeling that do not reflect internal extinction corrections but do include foreground

extinction and k-corrections. In other words, this magnitude is the SED model’s refinement of the raw custom-processed or RF

mNUV.

SED-inferred MNUV or mNUV Similar to SED-output MNUV or mNUV but where no input mNUV is provided to the SED-fitting algorithm.
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Green Bank Telescopes as well as archival flux-limited data,
primarily from ALFALFA (D. V. Stark et al. 2016; updated in
Z. L. Hutchens et al. 2023; see M. P. Haynes et al. 2018 for
ALFALFA). D. V. Stark et al. (2013) checked the relative flux
calibrations of the ALFALFA data and the single-pointing
Arecibo and GBT data, and found them to be consistent (D.
Stark 2025, private communication). The non-flux-limited
Arecibo and Green Bank observations were performed only
for RESOLVE. For ECO galaxies outside RESOLVE-A, gas
masses are based on ALFALFA-100 catalog data (M. P. Haynes
et al. 2018) with value-added data products provided in
Z. L. Hutchens et al. (2023). For both surveys, the best gas
estimates for individual galaxies were derived from a combina-
tion of 21 cm detections, deconfused detections, upper limits,
and the photometric gas fraction technique, as detailed in
Z. L. Hutchens et al. (2023). As ALFALFA is a flux-limited
survey, the H I masses for ECO galaxies outside RESOLVE-A
are more often derived from the photometric gas fraction
technique than the H I masses for RESOLVE galaxies are.

This work also uses an AGN catalog for RESOLVE and ECO
as developed in M. S. Polimera et al. (2025, in preparation),
which extends the work of M. S. Polimera et al. (2022). In short,
this catalog includes AGN classification using traditional optical
emission-line methods, e.g., BPT (Baldwin-Phillips-Terlevich,
J. A. Baldwin et al. 1981) and VO (Veilleux-Osterbrock,
S. Veilleux & D. E. Osterbrock 1987) diagrams, WISE
photometry, and a new class of AGN (SF-AGN) that are mostly
found in low-metallicity and starbursting dwarfs.

2.6. Star Formation Classification

We use the same specific star formation rate (sSFR) division
as C24 to classify galaxies in the parent ECO survey into high,
medium, and low star formation categories based on double-
Gaussian fitting to identify a high star formation locus, a low star
formation locus, and a medium star formation region between
the two loci in sSFR versus stellar mass. For simplicity, we refer
to these three categories as blue, red, and green, respectively.

2.7. Nugget Selection

We applied the selection criteria from C24 to the RF-enhanced
parent ECO survey and added it to our previous RESOLVE
selection to create a parent RESOLVE+ECO survey. As in C24,
we required nugget candidates to be (1) offset to sizes below the
Re–M* relation for red galaxies, (2) central galaxies in their groups,
and (3) nonflybys as defined in Section 2.4. We used the
RESOLVE Re–M* relation using Re from PyProFit for all galaxies
in RESOLVE. For ECO galaxies not in RESOLVE, we used the
Re–M* relation based on ECO galaxies with Re from DECaLS.
Not double-counting galaxies that appear in both surveys and
excluding ECO galaxies that have neither custom-processed mNUV

nor RF mNUV from RF models trained to predict custom-processed
NUV data, the size of the parent RESOLVE+ECO sample is
10,018, and the RESOLVE+ECO nugget sample is composed of
1082 nugget candidates (714 blue, 117 green, 251 red).6 This new
nugget sample contains significantly more galaxies than
the RESOLVE nugget sample from C24 (89 blue, 10 green,
42 red).

3. Methods for Extending ECO with Machine Learning

In this section, we justify the need for RF mNUV from
machine learning trained to predict custom-processed NUV
data and describe our RF algorithms, which use deep/shallow
GALEX and existing parameters within ECO as features to
predict RF mNUV for galaxies that lack custom-processed
mNUV.

3.1. Justifying the Use of Machine Learning

Custom-processed NUV magnitudes derived from deep
GALEX observations are vital for robust extinction corrections
via SED modeling. We need extinction corrections to estimate
accurate UV-derived SFRs for classifying nuggets, as dust can
heavily obscure UV light. This UV sensitivity to dust makes
SED-derived extinction corrections themselves sensitive to
input NUV magnitudes. Figure 19 in Z. L. Hutchens et al.
(2023) highlights the inconsistency of extinction corrections in
ECO when custom-processed mNUV data are included as inputs
to stellar population synthesis modeling versus when no NUV
data are included as inputs. Blue galaxies show a ∼0.3 dex
offset in extinction-corrected u − r in the absence of custom-
processed mNUV inputs.
The importance of including high-quality UV data to

minimize bias in SED-derived quantities has also been
highlighted in other studies. Z. Fan & S. Wang (2017)
performed UV/optical/IR SED fitting of stellar systems to
probe the effect of WISE/GALEX data on SED modeling, and
found that excluding GALEX UV data returns systematically
older ages and higher metallicities than when including
GALEX data. They also concluded that GALEX UV bands
are more crucial for SED fitting than other bands (e.g., WISE
W1/W2) and that high-quality UV data are required for robust
fitting. S. Salim et al. (2016) derived sSFRs from SED models
using UV/optical/IR for a low-redshift sample of >7 × 105

galaxies, and found that including UV data systematically
drives sSFRs derived from SED fitting to higher values than
when UV data are omitted from fitting, which is consistent with
our findings. S. Salim et al. (2016) also found that having
deeper GALEX data reduces the random uncertainty on SFR,
which suggests that having deeper GALEX data improves SED
fitting. Thus, high-quality UV data are necessary to minimize
bias in SED outputs.
Using low-quality GALEX data, such as the default shallow

imaging of the GALEX AIS survey (∼150 s), does not yield
robust mNUV for our purposes. K. D. Eckert et al. (2016) found
that shallow GALEX imaging was inadequate for recovering
NUV flux, so they only performed NUV photometry for ECO
galaxies with GALEX exposure time �1000 s. To verify their
conclusions, we have compiled deep and shallow GALEX
pipeline magnitudes for 4277 galaxies with both. Figure 1 shows
the difference in quality between deep (>1000 s) GALEX
pipeline data and shallow (<1000 s) GALEX pipeline data. The
median offset between deep GALEX mNUV and shallow
GALEX mNUV is −0.06. The offset is best in the brightest bin
(−0.02) and worst in the faintest bin (−0.17). We also compare
SFRs calculated using internal extinction-/k-corrected MNUV

based on SED fitting that used shallow versus deep GALEX
mNUV data. The median fractional SFR error is 0.05, with the
median fractional SFR errors in the highest and lowest SFR
bins being 0.02 and 0.15, respectively. The scatter within the
68th percentile lines extends to ∼0.2–0.4 dex at the faint end.

6
We rejected 116 galaxies from our analysis that did not have custom-

processed mNUV and for which we could not generate a successful RF mNUV

due to having u, g, r, i, or z = 0 or badrphot > 0 (see Z. L. Hutchens et al.
2023).
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Applying a simple offset correction to shallow GALEX mNUV

data would not sufficiently correct for this discrepancy given the
huge scatter. Furthermore, we aim to predict RF mNUV not only
for ECO galaxies without custom-processed mNUV but also for
those without shallow GALEX mNUV. In what follows, we
discuss RF models that yield RF mNUV data that can be used for
robust SFRs.

3.2. Random Forest Setup

We used machine learning algorithms that take physical
parameters from the GALEX and ECO databases to predict RF
MNUV from random forest models trained to predict custom-
processed MNUV for ECO galaxies without custom-processed
MNUV. To start, we performed a cross-match between ECO
DR3 and GALEX. We used a 5″ cross-match radius and
extracted the mNUV and exposure time of all GALEX
measurements for every ECO galaxy. For each galaxy, we
used the deep GALEX mNUV with the highest exposure time
�1000 s as our deep input and the shallow GALEX mNUV with
the highest exposure time <1000 s as our shallow input, if
available.

We chose to use the random forest technique as RF
algorithms can accept tabular data directly from the ECO
database, utilize continuous or discrete features, and provide
feature importances. We used the RANDOMFORESTREGRESSOR

algorithm from SCIKIT-LEARN. We used the SQUARED_ERROR

metric to optimize our RF models as it was found to be stronger
than other metrics in J. E. Krick et al. (2020). We adopted a
training/test split of 80/20 and the following parameters as
features: Mu, Mg, Mr, Mi, Mz, stellar mass, halo mass, H I gas
mass, 90% light radius, μΔ, and shallow/deep GALEX MNUV

when available, where all non-GALEX properties are from

Z. L. Hutchens et al. (2023).7 Near-IR magnitudes are not used

as they are not uniformly available for all ECO galaxies. We
chose to use absolute magnitudes to represent intrinsic, rather
than distance-dependent, properties of galaxies. Stellar masses
are also included to allow the RF to respond to the scatter in
mass-to-light ratios. Halo mass is included to account
for environment. We also provide the 90% light radius in
kiloparsecs and μΔ as features to provide information on extent
and morphology, respectively. While the H I gas mass is
available for ECO galaxies, most of our RF models exclude it
as a feature to keep MNUV independent of H I data and thereby
maintain the ability to compare SFRs and gas data. Details on
which RF models include/exclude H I gas data can be found in
Section 3.3 and Table 2.
Hyperparameter selection was performed in two steps. We

first used a randomized search spanning a range for each of the

following hyperparameters:

1. N_ESTIMATORS: 100 to 700 in steps of 10.
2. MAX_FEATURES: SQRT, AUTO.
3. MAX_DEPTH: 10 to 110 in steps of 10.
4. MIN_SAMPLES_LEAF: 2, 5, 7.
5. MIN_SAMPLES_SPLIT: 1, 2, 4.
6. BOOTSTRAP: True, False.

We focused on optimizing these specific hyperparameters

as they were found to be the most important for

Figure 1. Comparison of pipeline GALEX data based on deep vs. shallow exposures (>1000 s or <1000 s, respectively). In both plots, black dots represent ECO
galaxies with both deep and shallow GALEX data, and the cyan line marks y = 0. The solid red lines indicate the binned medians and the dashed red lines represent
binned 84th percentiles and 16th percentiles. Left: deep mNUV–shallow mNUV vs. deep mNUV. Deep mNUV estimates are systematically brighter than shallow GALEX
mNUV estimates, especially for fainter galaxies. Right: fractional error in SFRs based on SED fits vs. SFRs based on SED fits using deep GALEX data. For this panel,
we separately input pipeline GALEX deep and shallow mNUV to the SED-fitting code and use the resulting correctedMNUV values to calculate SFRdeep and SFRshallow,
respectively. The y-axis fractional error is (SFRdeep–SFRshallow)/SFRdeep.

7
Though we do find differences in the predictive power of the deep and

shallow RF models, our tests indicate that the numerical value of the exposure
time has minimal feature importance (<0.02%) when used as an input, so we
consider it only indirectly via use of deep versus shallow models.
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RANDOMFORESTREGRESSOR in S. Mucesh et al. (2021).
The randomized search (sklearn.model_selection.RANDOMIZED-
SEARCHCV) performed 80 cross-validated RF iterations using
random combinations of the above hyperparameters and returned
the set of hyperparameters that performed the best. From there, we
performed a cross-validated grid search (sklearn.model_selection.
GRIDSEARCHCV ) centered on the set of best hyperparameters from
the randomized search to determine our finalized hyperparameters.
For example, if the randomized search returned N_ESTI

MATORS= 200, the grid search would evaluate N_ESTIMATOR

between 100 and 300 in steps of 50. The finalized hyperpara-
meters for the RF algorithms were as follows:

1. N_ESTIMATORS: 150.
2. MAX_FEATURES: AUTO.
3. MAX_DEPTH: 75.
4. MIN_SAMPLES_LEAF: 5.
5. MIN_SAMPLES_SPLIT: 4.
6. BOOTSTRAP: True.

We found that these hyperparameter values performed well
for all the RF models we explored.

3.3. Random Forest Models

We created four RF models that differ based on their
GALEX and H I gas data inputs. The features used for the four
models are as follows:

1. Shallow model: includes Mu, Mg, Mr, Mi, Mz, stellar
mass, halo mass, 90% light radius in kiloparsecs, μΔ, and
shallow GALEX MNUV.

2. Deep model: includes Mu, Mg, Mr, Mi, Mz, stellar mass,
halo mass, 90% light radius in kiloparsecs, μΔ, and deep
GALEX MNUV.

3. Shallow+deep model: includes Mu, Mg, Mr, Mi, Mz,
stellar mass, halo mass, 90% light radius in kiloparsecs,
μΔ, deep GALEX MNUV, and shallow GALEX MNUV.

4. No-GALEX model: includes Mu, Mg, Mr, Mi, Mz, stellar
mass, halo mass, 90% light radius kiloparsecs, μΔ, and
H I gas mass.

While K. D. Eckert et al. (2016) derived custom-processed
mNUV for most ECO galaxies with deep GALEX data, we
found ∼300 galaxies with deep GALEX pipeline mNUV that
did not have custom-processed mNUV, hence the use of deep
and deep+shallow models. For the no-GALEX model, we only
use galaxies with H I gas mass derived from clean 21 cm
detections, strong upper limits, or deconfused observations as
indicated in Z. L. Hutchens et al. (2023). Galaxies used to train
the shallow, deep, and shallow+deep models were also used to
train the no-GALEX model, assuming adequate H I gas
estimates, by ignoring GALEX data. These four models were
trained and tested on all galaxies that have acceptable values
for every feature in their model—the total number of train+test
galaxies for the shallow+deep, deep, shallow, and no-GALEX

models were 3457, 3811, 3567, and 2009, respectively. Table 2
lists each model’s top three feature importances. When
available, the most important features are shallow and deep
GALEX pipeline MNUV. This result is expected as GALEX
pipeline MNUV and RESOLVE/ECO custom-processed MNUV

are measurements of the same intrinsic property, albeit at
different levels of quality. For the no-GALEX model, the most
important features were Mu, H I gas mass, and stellar mass. We
note that the no-GALEX model provided very poor results
when excluding H I mass, so we included H I mass.
We looked at the difference between custom-processed MNUV

and RF MNUV from RF models trained to predict custom-
processed MNUV for test galaxies, and found that the RF models
perform well overall, with higher accuracy correlating with the
availability of better GALEX data. To quantify the variations that
each of our four RF models can experience, we generated 100 RF
regressions using 100 unique test/train splits for each model and
evaluated the typical magnitude differences in test galaxies. The
magnitude difference is defined as custom-processedMNUV minus
RF MNUV and is denoted as ΔM, while the distribution of ΔM

values for all test galaxies for a single RF run will be referred to as
ΔMdist. Figure 2 shows distributions composed of 100 means and
100 standard deviations, where each mean and standard deviation
comes from oneΔMdist, for each of the four models. The medians
of the 100 ΔMdist means for the shallow+deep, deep, shallow,
and no-GALEX models are 0.001mag, 0.0003mag, 0.0005mag,
and 0.002mag, respectively.8 The medians of the 100 ΔMdist

standard deviations for the shallow+deep, deep, shallow, and
no-GALEX models are 0.271 mag, 0.280 mag, 0.292 mag, and
0.415 mag, respectively. Thus, the shallow, deep, and shallow
+deep models yield fairly similar results with increasing
accuracy, while the no-GALEX model displays an offset and
increased scatter. Based on these results, we rank the
performance of the models from best to worst as follows: (1)
shallow+deep, (2) deep, (3) shallow, and (4) no-GALEX.
We find that our shallow-predicted MNUV values match

custom-processed MNUV values better than shallow GALEX
pipeline MNUV values do. The vertical lines in Figure 2 show
the mean and standard deviation of custom-processed MNUV

minus shallow GALEX MNUV for ECO galaxies with both
measurements. Comparing shallow GALEX pipeline MNUV to
our shallow-predicted model MNUV illustrates the effectiveness
of the RF technique. Shallow GALEX pipeline MNUV values
have a mean offset of −0.167 mag and a standard deviation of
0.347 mag from custom-processed MNUV values, whereas
shallow-predicted MNUV values have a mean offset of
−0.0014 mag and a median standard deviation of 0.311 mag
based on the ΔMdist statistics in Figure 2. Not only does the
shallow model almost entirely correct the flux deficit of shallow
GALEX pipeline data, but it also reduces the scatter relative to

Table 2

Feature Importance

Model Feature Weights

Deep+shallow Deep MNUV (90%), shallow MNUV (7%), 90% light radius (0.5%), rest <0.5%.

Deep Deep MNUV (98%), 90% light radius (0.6%), Mu (0.5%), rest <0.5%.

Shallow Shallow MNUV (96%), Mu (1.3%), 90% light radius (1%), rest <0.5%.

No-GALEX Mu (58%), H I gas mass (23%), stellar mass (8%), rest <5%.

8
We also calculated the medians of 100 ΔMdist medians for the shallow

+deep, deep, shallow, and no-GALEX models: they are 0.029 mag,
0.027 mag, 0.027 mag, and 0.006 mag, respectively.
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custom-processed NUV data. This reduced scatter means that
our shallow model performs better than would a simple offset
correction based on the difference between shallow GALEX
MNUV and custom-processed MNUV data.

Table 3 lists RF-based photometry for ECO galaxies that lack
custom-processed NUV data in Z. L. Hutchens et al. (2023). In
nuvrfshallow, we provide RF MNUV based on just the
shallow model. In nuvrfgalex, we provide the best RFMNUV

estimate, where the order from best to worst of our models is
deep+shallow, deep, and shallow. In nuvrfbest, we provide
the same information but add the last-choice option of the no-
GALEX model, which uses H I as an input feature. Finally,
nuvrfbestflag identifies the source of the best MNUV

estimate in nuvrfbest. A flag of 0 indicates custom-processed
MNUV already existed for the galaxy, and −1 indicates that the
galaxy has neither custom-processed MNUV nor MNUV from
the RF models due to missing or unreliable input features
(see footnote 6). We also provide RF-corrected MNUV, Mu, and
Mr based on SED fits using nuvrfbest as the NUV input.6

Unsurprisingly, our shallow-predicted mNUV values improve
on the SED-inferred mNUV values in the current ECO database,
which were inferred with no input NUV at all. Last modified in
S. J. Kannappan et al. (2013), the SED-fitting algorithm uses
available UV/optical/near-IR photometry and Bayesian stellar
population modeling to infer intrinsic magnitudes and internal
extinction and k-corrections. Thus, it outputs magnitudes in
bands without input magnitudes. Currently, the best ECO
database estimate for mNUV for galaxies without custom-
processed mNUV is this SED-fit inferred value. Figure 3 shows
NUV − r versus stellar mass for ECO galaxies with custom-
processed mNUV (solid black contours) compared to ECO
galaxies without custom-processed mNUV (dashed contours in

both panels). We use the same stellar masses and mr for all

contours, so differences in the contours represent the method

used to estimate mNUV. The left panel uses SED-inferred mNUV,

and the right uses shallow-predicted RF mNUV. As noted in

Z. L. Hutchens et al. (2023), SED inference alone, with no

NUV input, yields unusably inconsistent colors. In contrast, the

contours derived from shallow-predicted RF mNUV follow the

contours derived from custom-processed mNUV. Thus, we have

successfully enhanced ECO by providing RF mNUV estimates

that are comparable in quality to custom-processed mNUV data.
To interpret the possible influence of cosmic variance on our

machine learning models, we have separated the parent ECO

survey into 10 equal-sized subvolumes split by R.A., then

recreated the four RF models 10 times where each time one

subvolume is excluded from the training. Using a test set

composed of a random selection of 20% of all galaxies and a

training set composed of all nontest galaxies in the jackknifed

volume (i.e., the full ECO volume with one subvolume

removed), we found that all the models trained on different

jackknifed volumes perform comparably to each other. For

example, the means of the difference between the observed

and predicted magnitudes for test galaxies in the jackknifed

volumes for the shallow model ranged from −0.008 to −0.002.

The standard deviations of the differences between the

observed and predicted magnitudes for test galaxies for the
shallow model ranged from 0.302 to 0.309. The no-GALEX,

deep, and shallow+deep models also show similar tightness in

means and standard deviations for all jackknifed volumes.

Given the strong agreement in RF predictions between all the

jackknifed volumes, we conclude that cosmic variance does not

strongly influence our machine learning models.

Figure 2. Performance of random forest (RF) model predictions and shallow GALEX pipeline magnitudes compared to custom-processed magnitudes. Curves show
distributions of means and standard deviations of ΔMdist (where each ΔMdist is a distribution of the differences ΔM between custom-processed MNUV and RF MNUV

for all test galaxies in a single RF regression), where 100 independent RF regressions were performed for each model. Each distribution in this figure is composed of
100 data points, where a data point is the mean (left panel) or the standard deviation (right panel) of ΔMdist from one RF regression with a unique test/train split. For
comparison, vertical magenta lines mark the mean (left panel) and standard deviation (right panel) of the differences between shallow GALEX MNUV and custom-
processed MNUV for ECO galaxies with both. Models that use GALEX data return comparable mean results, with slightly higher standard deviations for shallower
data. The no-GALEX model has a noticeably worse performance. The shallow model corrects the large offset seen in shallow GALEX pipeline data.
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We fed these RF mNUV estimates to the SED-fitting
algorithm, and found that the resulting uncertainties on SED-
derived output magnitudes were roughly consistent with the
uncertainties for the input magnitudes to SED modeling. Input
photometric uncertainties were derived as described in
K. D. Eckert et al. (2015; and tabulated in Z. L. Hutchens
et al. 2023). The SED model adds an additional uncertainty
component, which is an estimate of the reproducibility between
different surveys due to differences in background subtraction
(M. R. Blanton et al. 2011) and other methodologies such as
extrapolation. These added components are 0.1 mag in NUV,
0.046 mag in u, 0.022 mag in griz, and 0.1 mag in JHK.
Figure 4 shows the difference of input magnitude minus SED-
fit output magnitude (the latter without k-corrections or internal
extinction corrections to match the input magnitude) for the
ugriz bands, with separate panels for galaxies with custom-
processed mNUV (left) versus with RF mNUV (right) as the input
data for SED fitting. The left panel reveals small systematic
offsets for ECO galaxies with custom-processed mNUV, where
the median offsets of the ugriz distributions are 0.072, 0.033,
0.033, 0.034, and 0.041, respectively. These values are only
slightly larger than the median observational ugriz uncertainties
of 0.056, 0.024, 0.024, 0.026, and 0.034, respectively. For the
right panel, we subtracted these measured systematic offsets
from RF mNUV, then scaled the remaining input–output
differences by the inverse of the quadrature-summed input
uncertainty. The resulting ugriz distributions have standard
deviations of 1.13, 1.09, 1.02, 1.04, and 0.96, respectively.
This result suggests that the uncertainties associated with SED
fitting increase the quadrature-summed input uncertainties by
∼10% or less and can be neglected.

Following this analysis of uncertainties, we obtained
k-corrected and internal+foreground extinction-corrected RF
MNUV values. These values were used to calculate extinction-
corrected SFRs for galaxies in the parent ECO survey that
lacked SFRs based on custom-processed NUV data. Finally,
we generated the parent RESOLVE+ECO survey and nugget
sample using all galaxies with extinction-corrected SFRs as
described in Section 2.7.

4. Results

We have constructed our RESOLVE+ECO nugget sample
to answer three key questions: (1) Are the halo mass and G/S
distributions of green nuggets consistent with their being

nuggets caught in the process of halo quenching? (2) Above the
threshold scale (Mhalo = 1011.4Me), can AGN be linked to the
blue-to-red nugget transition? (3) Below the threshold scale,
can AGN be linked to temporary quenching in nuggets? Below,
we devote a subsection to each question.

4.1. Halo Quenching for Green Nuggets

We find that green nuggets are likely nuggets caught in the
process of halo quenching. While C24 showed that halo mass
was the driver for the blue-to-red nugget transition, C24 had
too few green nuggets to conclusively determine whether the
halo mass distribution of green nuggets is more consistent with
the halo mass distribution of blue nuggets or red nuggets. With
RESOLVE+ECO, we have nearly 10× the number of green
nuggets, allowing us to draw stronger conclusions. Figure 5
(left panel) shows the halo mass distributions of blue, green,
and red nuggets. The halo mass distributions of blue and red
nuggets are extremely distinct, as a two-sample Kolmogorov–
Smirnov (KS) test between them returns a p-value of
1.22 × 10−15. For blue and green nuggets, a two-sample KS
test returns a p-value of 7.77 × 10−15, whereas for red nuggets
and green nuggets, a two-sample KS test returns a p-value of
0.001. Green nuggets are far more similar to red nuggets than
to blue nuggets, but consistent with being a transitional
population on the way to quenching.
As shown in Figure 5 (right panel), the baryonic content of

our nuggets tells a somewhat consistent story. A two-sample
KS test of the G/S distributions of green and red nuggets
returns p= 0.002, whereas the same test for green and blue
nuggets returns p = 1.44 × 10−15. When restricting our
nuggets to those with H I gas mass derived from clean 21 cm
detections, strong upper limits, or deconfused observations, the
green/red and green/blue KS tests return p= 0.06 and
p = 6.66 × 10−16, respectively. Using the same gas mass
restriction as above, the median log G/S for blue, green, and
red nuggets are −0.01, −1.40, and −1.44, respectively, and the
standard deviations of log G/S are 0.63, 0.40, and 0.34. These
findings are consistent with a scenario where green nuggets,
like red nuggets, have reduced gas content due to halo
quenching, i.e., virial shocks suppressing cold-gas refueling,
explaining their suppressed sSFRs. However, green nugget
G/S are not very intermediate, being roughly as low as those of
red nuggets. Either their intermediate colors reflect very recent
gas exhaustion, or they may have significant cold molecular

Table 3

RF-derived MNUV

Column Designation Description

1 name ECO galaxy name.

2 nuvrfshallow RF MNUV based on shallow model.

3 nuvrfgalex RF MNUV based on best model, excluding no-GALEX.

4 nuvrfbest RF MNUV based on best model, including no-GALEX.

5 nuvrfbestflag Flag corresponding to best MNUV, 0 if custom-processed MNUV exists.

6 nuvcorr Corrected MNUV based on SED fitting where nuvrfbest is used as an input.

7 ucorr Corrected Mu based on SED fitting where nuvrfbest is used as an input.

8 rcorr Corrected Mr based on SED fitting where nuvrfbest is used as an input.

Notes. (1) For Column (3), best available model was used, going from best to worst: (1) shallow+deep model, (2) deep model, (3) shallow model. (2) Column (4)

differs from Column (3) in allowing the no-GALEX model as a last choice. (3) For Column (5), the flag values correspond to the following: value of –1: could not

extract a successful RF MNUV due to null feature(s), 0: custom-processed MNUV already existed, 1: RF MNUV predicted by the shallow+deep model, 2: RF MNUV

predicted by the deep model, 3: RF MNUV predicted by the shallow model, 4: RF MNUV predicted by the no-GALEX model. All RF MNUV come from RF models

trained to predict custom-processed MNUV, not GALEX MNUV. Absolute magnitudes may be converted to apparent magnitudes using Equation (1).
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gas. Compact starbursts do tend to convert H I to H2, but also
deplete and disperse H2 via feedback, so molecular gas data
would be very interesting as a window into green nugget
evolution (see, e.g., D. V. Stark et al. 2013).

4.2. Active Galactic Nuclei in Nuggets above the Threshold
Scale

Above the threshold scale (Mhalo� 1011.4Me), we find that
green nuggets have a higher AGN frequency than blue or red
nuggets. C24 evaluated the AGN frequency in each of the
nugget categories above the threshold scale, and found AGN to
be most common in blue nuggets, but the C24 green nugget
sample consisted of only eight objects above Mhalo� 1011.4Me.
With the new RESOLVE+ECO nugget candidates, we
performed the same analysis in the Mhalo� 1011.4Me mass
regime, and found that the AGN frequencies (and their
associated 1σ binomial uncertainties) in blue, green, and red

nuggets are 117/298 (39.2%-2.8%
2.9% ), 41/85 (48.2%-5.4%

5.4% ), and

69/235 (29.3%-2.9%
3.1% ), respectively. Thus, C24 missed that

green nuggets have a higher overall AGN frequency than either
blue or red nuggets, hinting at AGN playing a role in blue-to-
red nugget quenching.

To probe the mass dependence of AGN in nuggets,
we evaluated the AGN frequencies of blue, green, and
red nuggets in three halo mass bins above the threshold
scale: 1011.4Me < = Mhalo < 1012Me, 10

12
Me < = Mhalo <

1012.5Me, and Mhalo > = 1012.5Me. Figure 6 shows the AGN
frequency of nuggets in the described mass regimes. Green
nuggets have a higher AGN frequency (53.8%-8.0%

7.8% ) than

blue/red nuggets (blue= 34.1%-2.9%
3.1% , red= 30.7%-3.8%

4.0% ) in
the bin between the threshold and bimodality scales. In
the 1012Me < = Mhalo < 1012.5Me bin, blue nuggets have a

higher AGN frequency (61.4%-7.5%
7.0% ) than green/red nuggets

(green= 38.2%-7.9%
8.6% , red= 26.8%-4.6%

5.1% ). The highest mass bin
shows similar but noisier results.
We also compare the SF activity and baryonic content of

nuggets with AGN to nuggets without AGN. The bottom
panels of Figure 7 show the sSFR and G/S distribution of
nuggets in the Mhalo� 1011.4Me mass regime. The p-values
from two-sample KS tests for the G/S distribution and the
sSFR distribution of these two nugget subpopulations are 0.001
and 0.0009, respectively. When restricting our nuggets to those
with H I gas mass derived from clean 21 cm detections, strong
upper limits, or deconfused observations, the G/S p-values
become 0.001 and 0.001, respectively. While nuggets without
AGN above the threshold scale show bimodal distributions in
both sSFR and G/S space, nuggets with AGN appear to have a
somewhat higher tendency to occupy intermediate regions of
sSFR and G/S, both of which are where transitional objects are
likely to be found.
Overall, these results for nuggets above the threshold scale

are consistent with the suggestion by J. Nogueira-Cavalcante
et al. (2019) that green nuggets are experiencing fast-mode
quenching, possibly due to AGN feedback, in the presence of
virial shocks that prevent cold-mode refueling. The green
nugget AGN frequency may be highest right above the
threshold scale because AGN feedback accelerates quenching
shortly after the nugget begins experiencing virial shocks. It
may also be possible that optical AGN are easier to detect in

Figure 3. NUV − r vs. stellar mass for ECO galaxies. In both panels, the solid black contours represent ECO galaxies with custom-processed mNUV from K. D. Eckert
et al. (2016) as tabulated in Z. L. Hutchens et al. (2023), while the dashed contours are galaxies that do not have custom-processed mNUV but do have shallow-
predicted mNUV. Stellar masses and mr are from Z. L. Hutchens et al. (2023) in both panels. Left: the dashed contours use mNUV from preexisting SED fitting for ECO
(K. D. Eckert et al. 2016), which did not use any NUV input data for those galaxies lacking deep GALEX data. Significant offsets between the two sets of contours can
be seen. Right: the dashed contours use shallow-predicted RF mNUV. The stronger agreement demonstrates that our RF models provide much more reliable NUV
predictions than can be inferred from SED fits with no input NUV.
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galaxies with star formation activity below the star-forming
main sequence (S. L. Ellison et al. 2016). That said, blue and
green nugget AGN frequencies are consistent with each other
above Mhalo > = 1012.5Me, which indicates the need for an
even larger sample to improve statistics. We do find that the
AGN frequency for blue nuggets is consistent with other
studies of high-mass blue nuggets (G. Barro et al. 2013;
D. D. Kocevski et al. 2017; E. Wang et al. 2018).

4.3. Active Galactic Nuclei in Nuggets below the Threshold
Scale

Below the threshold scale, we find plausible evidence of
AGN being associated with temporary quenching in some
nuggets. In C24, there were only four AGN-hosting nuggets
out of 54 nuggets below the threshold scale, too few to assess
relative AGN frequencies for blue/green/red dwarf nuggets. In

the study, we find that 44 out of 464 ( -
+9.5% 1.3%
1.4%) nuggets with

Mhalo < 1011.4Me host AGN (31 blue, 10 green, three red),
which is roughly consistent with the reported AGN frequency
in C24 within much smaller uncertainties. The blue, green, and
red nugget AGN fractions below the threshold scale are 31/416
(7.5%-1.2%

1.4% ), 10/32 (31.3%-7.5%
8.7% ), and 3/16 (18.8%-7.8%

11.5% ),
respectively. We conclude that for nuggets below the threshold
scale, AGN are much more common in partially or fully
quenched systems.

We also evaluated whether differences in nugget halo mass
functions may impact nugget AGN fractions. In Section 4.1, it can
be seen that the three nugget categories each follow distinct halo
mass functions. As the blue nugget halo mass function rises toward
lower mass, uncertainties in halo mass will cause more blue
nuggets in low-mass halos to be scattered toward higher halo
masses compared to blue nuggets in high-mass halos scattered
toward lower halo masses. The scattering effect for red and green
is less severe because blue nuggets have the strongest slope in their
halo mass function; so, for brevity, we describe what happens to

the blue nugget population. To test the robustness of our findings
to asymmetrical scatter, we added random errors to the halo masses
for our final nugget sample, sampled from a Gaussian distribution
with μ = 0 and σ = 0.3 dex (which roughly corresponds to 1σ
uncertainties per Figure 14 of Z. L. Hutchens et al. 2023). We
performed this sampling 1000 times and evaluated the mean and
standard deviation of the AGN fraction in each halo mass bin.
After performing these Monte Carlo simulations, the mean AGN
fractions of the Mhalo < 1011.4, 1011.4Me < = Mhalo < 1012Me,
1012Me < = Mhalo < 1012.5Me, and Mhalo > = 1012.5Me halo
mass bins are 12.1%, 22.4%, 42.6%, and 57.1%, respectively. The
standard deviations of AGN fractions for those same bins
are 0.9%, 1.8%, 4.6%, and 6.7%. The trend of increasing
AGN fraction with respect to halo mass seen in our results (AGN
fractions of 7.5%, 34.1%, 61.3%, and 75% for the Mhalo < 1011.4,
1011.4Me < = Mhalo < 1012Me, 10

12Me < = Mhalo < 1012.5Me,
and Mhalo > = 1012.5Me halo mass bins, respectively) is still
present, albeit weaker when adding artificial extra errors on top of
the true errors to the blue nugget halo masses. Therefore, we find
that the nugget halo mass function cannot produce the trend we see
in nugget AGN fractions as a function of halo mass, and the
underlying trend is likely stronger than we measured.
The top panels of Figure 7 show sSFR and G/S distributions

for nuggets below the threshold scale (Mhalo < 1011.4Me) with
and without AGN. In general, dwarf nuggets with AGN have
lower G/S and sSFR compared to dwarf nuggets without
AGN, as seen for more massive nuggets in Section 4.2.
However, AGN/non-AGN differences are more extreme at low
mass: Dwarf nuggets with AGN show bimodal traits in G/S
and somewhat bimodal traits in sSFR, whereas dwarf nuggets
without AGN are almost entirely unquenched. Performing a
two-sample KS test on the G/S distributions of nuggets with
AGN and nuggets without AGN returns a p-value of 0.0005.
The same test performed on the sSFR distributions of nuggets
with AGN and nuggets without AGN returns a p-value of

Figure 4. Comparison of ugriz input magnitudes and output magnitudes from SED fitting for ECO galaxies. For this comparison, k-corrections and internal extinction
corrections inherent in SED-output results were removed, while foreground Milky Way extinctions were matched. Left: input ugriz minus SED-output ugriz
magnitudes for ECO galaxies with custom-processed mNUV. The distributions, which were created using kernel density estimation, show minor systematic <0.1 mag
offsets (see Section 3.3 for discussion). Right: input ugriz minus SED-output ugriz magnitudes for ECO galaxies with RF mNUV, with the systematic offsets measured
in the left panel removed and the remaining residuals scaled by the inverse of the quadrature-summed systematic and observational uncertainties (see Section 3.3 for
discussion). A Gaussian with a standard deviation of 1 has been included for reference. The standard deviations of the ugriz distributions are only marginally larger
than 1.0, which suggests that the quadrature-summed observational and systematic input uncertainty is a reasonable proxy for the SED-output magnitude uncertainty.
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3.37 × 10−6. Restricting nuggets with/without AGN below the
threshold scale to those with H I gas mass derived from clean
21 cm detections, strong upper limits, or deconfused observa-
tions reduces the nuggets with AGN sample to just 10 nuggets,
too few to effectively compare to nuggets without AGN.

While our results link AGN to temporary quenching in
nuggets in low-mass halos (Mhalo < 1011.4Me), this result has
multiple interpretations. AGN feedback may cause quenching,
but our result is also consistent with the notion that the
abatement of star formation feedback could allow for an AGN
to turn on (D. Anglés-Alcázar et al. 2017; M. Habouzit et al.
2017; J. D. Bradford et al. 2018; M. S. Polimera et al. 2022).
The latter scenario is further degenerate with AGN being easier
to detect in galaxies with lower star formation (M. S. Polimera
et al. 2022). We note that only ∼25% of nuggets below the
threshold scale with log sSFR <−1 Gyr−1 have detectable
AGN, so it may be that other internal mechanisms, such as
stellar feedback, are the primary drivers for temporary
quenching.

4.4. Considering Cosmic Variance

We have also probed the potential impact that cosmic
variance can have on our key results regarding nuggets. We
used the same jackknife approach of iteratively removing
subvolumes of the parent ECO+RESOLVE survey as
described in Section 3.3 to recompute our statistical results.
Concerning halo mass distributions, green nuggets still differ

from blue nuggets with KS test p-values less than 1 × 10−11,
while green and red nuggets differ less, with p-values of
4 × 10−4 to 6 × 10−3. These results confirm that green nuggets
have a halo mass distribution strongly distinct from blue
nuggets and somewhat distinct from red nuggets, consistent
with active quenching.
Pivoting to AGN fractions, we find that green nuggets still

exhibit high AGN fractions between the threshold and
bimodality scales. The green nugget AGN fraction between

Figure 5. Halo mass distributions and G/S as a function of halo mass for ECO+RESOLVE nugget candidates. Black dashed lines in both panels represent the
threshold scale. Two-sample KS tests show that green nuggets are much more similar to red nuggets than to blue nuggets in both halo mass and G/S (Section 4.1).
Left: error bars indicate 1σ Poisson uncertainties. As our halo masses are derived from halo abundance matching, which assumes a monotonic relationship between
group halo mass and group luminosity, the lowest-mass halos are almost exclusively single-galaxy groups, and the galaxy luminosity floor described in Section 2.1
creates an apparent halo mass floor ofMhalo ∼ 1011.1Me. Right: contours represent the parent ECO+RESOLVE survey. The tight locus of green and red nuggets at log
G/S ∼ 1.3 reflects H I mass estimates based on upper limits clustered at ∼5% of the stellar mass, as described in Z. L. Hutchens et al. (2023).

Figure 6. AGN frequencies of blue, green, and red nuggets in four halo mass
bins. Binomial 1σ uncertainties are provided for each bar. In the first mass bin,
blue nuggets have a notably lower AGN frequency than red or green nuggets.
Green nuggets have notably higher AGN frequency than red or blue nuggets in
the second mass bin, possibly due to AGN feedback accelerating quenching
just above the threshold scale, or conversely quenching allowing AGN to be
more active/detectable.
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the threshold and bimodality scales is equal to or greater than

50% in every jackknifed volume. Additionally, the green

nugget AGN fraction between the threshold and bimodality

scales is at least 1.5× higher than the blue or red AGN fraction

between the same scales in every jackknifed volume. Blue

nuggets also still have the lowest AGN fraction below the

threshold scale compared to green or red nuggets in every

jackknifed volume. These results agree with our results in

Sections 4.2 and 4.3.
Finally, as in Sections 4.2 and 4.3, we compared the G/S

and sSFR distributions of AGN-hosting nuggets and nuggets

without AGN, first for just dwarfs and then for just giants, and

found KS test p-values between 0.003 and 9.69 × 10−7 for

every comparison of the G/S and sSFR distributions.

This check confirms our results of AGN-hosting nuggets and

non-AGN-hosting nuggets having distinct G/S and sSFR

distributions.
In summary, given that our key results persist in jackknifed

volumes of the parent RESOLVE+ECO survey, we conclude

that our results for the full nugget census are not significantly
impacted by cosmic variance.

5. Conclusions

We have extended the nugget sample of C24 by using
machine learning to expand the availability of high-quality
NUV data for the ECO survey, thereby creating a parent
RESOLVE+ECO survey ∼8× the size of the RESOLVE
survey used in C24. This larger z= 0 sample of nuggets at all
evolutionary phases has enabled us to better understand how
nuggets quench. Specifically, we aimed to answer these three
key questions:

1. Are the halo mass and G/S distributions of green nuggets
consistent with their being nuggets caught in the process
of halo quenching?

2. Above the threshold scale (Mhalo > 1011.4Me), can AGN
be linked to the permanent blue-to-red nugget transition?

Figure 7. sSFR and G/S distributions for nuggets with AGN and nuggets without AGN in halos both above and below the threshold scale (Mhalo = 1011.4Me). The
bandwidths of the kernel density estimations are the typical sSFR uncertainty (0.20 dex) and G/S uncertainty (0.15 dex) for the left and right columns, respectively. At
all masses, nuggets with AGN typically have lower G/S and sSFRs compared to nuggets without AGN, but the quenching is more pronounced below the threshold
scale.
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3. Below the threshold scale, can AGN be linked to
temporary quenching in nuggets?

In summary:

1. We used four random forest models, each calibrated on
ECO galaxies with high-quality custom-processed mNUV,
to predict high-quality random forest mNUV analogous to
custom-processed mNUV for the ∼50% of ECO galaxies
that lack custom-processed mNUV. The predicted mNUV

eliminates the ∼0.17 mag offset and reduces the
∼0.35 mag scatter between shallow GALEX pipeline
mNUV and custom-processed mNUV. Combining the
random forest and existing mNUV estimates in SED
fitting, we have doubled the number of ECO galaxies
with high-quality extinction-corrected SFRs and blue/
green/red classifications based on sSFR versus stellar
mass (Section 3 and Figure 2).

2. Combining the random forest-enhanced ECO and
RESOLVE surveys, we selected nuggets using the same
selection criteria as C24. In short, we required that
nuggets (1) be offset to sizes smaller than the red stellar
mass–effective radius relation, (2) be central galaxies, and
(3) not be flyby galaxies (Section 2.7).

3. We find that the halo mass distribution of green nuggets
is more similar to that of red nuggets, which favors halos
above the threshold scale, than to that of blue nuggets,
which favors low-mass halos. Green nuggets and red
nuggets also have similar atomic gas content. These
results suggest that green nuggets are experiencing halo
quenching with suppression of cold-gas accretion, though
the intermediate colors of green nuggets suggest very
recent or incomplete quenching. We lack data on
molecular gas, which may be important in this context
(Section 4.1 and Figure 5).

4. Above the threshold scale (Mhalo� 1011.4Me), green nuggets

have an overall higher AGN frequency (48.2%-5.4%
5.4% )

than seen for either blue (39.2%-2.8%
2.9% ) or red nuggets

(29.3%-2.9%
3.1% ). In the narrow range between the threshold

and bimodality scales, 1011.4Me < = Mhalo < 1012Me,
green nuggets are nearly 2× more likely to host an AGN
than either blue or red nuggets are, hinting at the possibility
that AGN play a role in permanent quenching. While AGN-
hosting nuggets typically have lower G/S and sSFR than
nuggets without AGN at all halo masses, we find that
intermediate mildly quenched values are more common
above the threshold scale (Section 4.2, Figures 6 and 7).

5. AGN are less common in nuggets below the threshold
scale, with the AGN frequency for blue nuggets

(7.5%-1.2%
1.4% ) lower than for green nuggets (31.3%-7.5%

8.7% )

or red nuggets (18.8%-7.8%
11.5% ). Below the threshold scale,

AGN-hosting nuggets are associated with more extreme
quenching and gas depletion than seen above the
threshold scale. This result may reflect either AGN
feedback or enhancement of AGN activity/detectability
when star formation abates (Section 4.3, Figures 6 and 7).

The expansion of ECO using machine learning allowed us to
draw stronger conclusions regarding comparatively rare galaxy
populations, such as green nuggets and nuggets with AGN.
Using existing data in the ECO DR3 database together with
GALEX pipeline mNUV values, our machine learning models
have effectively unified the halves of ECO with and without

custom-processed mNUV. This enhancement provides uniform
and robust star formation data as well as multiband extinction
corrections for future studies. Thanks to machine learning, we
have constructed the first data set able to show that z= 0 green
nuggets are primary sites of AGN activity, correlated with both
temporary quenching and permanent halo quenching. Our
enhanced nugget sample showed that green nuggets have the
highest AGN frequency above the threshold scale of all
nuggets, especially between the threshold and bimodality
scales. C24 missed these results due to having too few green
nuggets and AGN to robustly analyze. The green nugget–AGN
link may imply that AGN play a pivotal role in accelerating the
blue-to-red transition, although alternative interpretations need
further investigation. With nuggets being the early progenitors
of nearly all bulged and early-type galaxies today (I. G. de la
Rosa et al. 2016; Y. Gao & L.-L. Fan 2020), this insight into
the blue-to-red nugget transition is vital for understanding the
full galaxy evolution picture.
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