

ECO and RESOLVE: Morphology and Disk Growth in Environmental Context

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Amanda Moffett (ICRAR, U. of Western Australia)

Sheila Kannappan, Andreas Berlind, Kathleen Eckert, David Stark, David Hendel, Mark Norris, Norman Grogin, and the RESOLVE team

THE UNIVERSITY OF Western Australia

ECO Catalog Coverage

ECO and RESOLVE: Morphology and Disk Growth in Environmental Context - Moffett et al. 2015

- High completeness compilation
- Reprocessed SDSS, 2MASS, and GALEX photometry (based on methods of Eckert+ 2015 for RESOLVE)
- Stellar mass estimates using methods of Kannappan+ 2013 (also e.g., extinction-corrected colors, SFRs)
- Atomic gas masses (ALFALFA A40) and photometric gas fraction estimates (e.g., Kannappan+ 2013, Eckert+ 2015)
- Morphology information (quantitative, based on RESOLVE visual classifications)
- Environment metrics: group finding with halo abundance matching (Berlind+ 2006), number density fields, and largescale structure IDs in development (e.g., J. Florez, D. Stark)

DR1 now available: Moffett+ 2015 & http://resolve.astro.unc.edu/

ECO Mass Limited Sample Completeness

- ECO contains additional objects at ~all mags
- Comparison to RESOLVE-B gives further corrections

Improved Quantitative Morphology Cut

$$\mu_{90} = \log \frac{0.9M_*}{\pi r_{90,r}^2}$$
$$\mu_{\Delta} = \mu_{90} + 1.7\Delta\mu$$
$$\Delta\mu = \log \frac{0.5M_*}{\pi r_{50,r}^2} - \log \frac{0.4M_*}{\pi r_{90,r}^2 - \pi r_{50,r}^2}$$
Kannappan+ 2013

 μ_{Δ} improves on $C_r = r_{90}/r_{50}$ discriminant

0.8

Free

Morphology-Environment Relations

Traditional relation:
 P(M|E)
 Image: P(M|E)

Late Types Early Types

Morphology-Environment Relations

- Traditional relation: P(M|E)
- High baryonic mass relations shallower and offset towards higher ET frequency

Morphology-Environment Relations

- Traditional relation: P(M|E)
- High baryonic mass relations shallower and offset towards higher ET frequency
- Offset between low and high mass relations driven partially by change in blue and red galaxy frequency with galaxy mass

Morphology-Environment Relations

- Alternative relation: P(E|M)
- At fixed baryonic mass, main difference in typical environment is between red and blue satellites
 - Traditional relation mixes morphologygalaxy mass relation for centrals and colorenvironment relation for satellites

Blue Early Types and Disk Regrowth

- Blue ETs are a low mass and low group halo mass population
- Show similar environment distribution to blue LTs at fixed mass, consistent with LT disk regrowth
- Sufficient gas and star formation to grow new disks (see Kannappan+ 2009; Wei+ 2010; Moffett+ 2012; Stark+ 2013)

14

13

Log group halo mass

12

11

Gas Richness and Environment

- Fraction of gasdominated galaxies (M_{HI}/M_{*} > 1) is a strong function of group halo mass
- Large gas reservoirs are particularly common below $M_{halo} \sim 10^{11.5} M_{sun}$
- Not solely due to galaxy mass: gas-dominated satellites inhabit lower mass groups at fixed galaxy mass

Growing Disks at Low Mass

Frequency of UV-Bright disks in ETs greatest at low galaxy mass and group mass

Moffett+ 2012

Growing Disks at Low Mass

Frequency of UV-Bright disks in ETs greatest at low galaxy mass and group mass

Blue ETs, gas-dominated galaxies, and ET UV-B disks are preferentially found at group halo mass < $10^{11.5}$ M_{sun} & galaxy baryonic mass < 10^{10} M_{sun} (~ "gas-richness threshold" mass) \rightarrow disk growth regime

Summary of ECO First Results

- ECO DR1 now available (see Moffett+ 2015 & http://resolve.astro.unc.edu/)
- At fixed *galaxy* baryonic mass, the only significant difference in *group* mass with galaxy type is for satellite galaxies with different colors (i.e., red early/late types vs. blue early/late types)
- Traditional morphology-environment relation = morphology-galaxy mass relation for centrals + colorenvironment relation for satellites
- Low group halo mass (<10^{11.5} M_{sun}) and low galaxy mass regime - emergence of blue-sequence ETs, gas-dominated galaxies, and ET UV-Bright disk hosts → preferred for ongoing disk growth

Also see me discuss the mass budget of galaxy spheroids and disks in GAMA on Friday (408.01)!

Slices through ECO

Small-scale Density Fields: Group Collapse

Dividing Red from Blue

ECO GALEX Coverage

Cluster Slices

ET UV-B Disks

Disk Growth at Low Mass

- Frequency of UV Bright disks in ETs
 greatest at low
 galaxy mass and
 group mass
- ET UV-B disks host larger HI gas reservoirs than non UV-B disks
- ~75% of blue ETs in ECO host UV-B disks