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Objectives/Key Points 

Students will be able to: 
1. Identify situations in which the centripetal acceleration condition applies, based on 
understanding the assumptions that go into its derivation. 
2. Derive the Motions Find Mass equation from Newton’s laws and the centripetal acceleration 
condition. 
3. Apply the Motions Find Mass equation to measure enclosed mass using orbital parameters. 
 
Unit Home 

Circular Motion and Newton’s Laws 

Prerequisites 

Students should be familiar with circular motion and Newton’s laws. They should know that the 
distance in the Universal Law of Gravitation is measured between the centers of the masses. See 
Appendix if students have not previously seen the derivation of the centripetal force equation. 

Time: 60-75 min depending on whether Appendix is used (+ optional 20 min post-lesson) 

Materials 

Graph paper with pre-marked axes 
Weight on string 
 
Sticking Points 

1. Students tend to think that an equation is generally applicable, i.e. “always true.” This 
lesson emphasizes that the Motions Find Mass equation is applicable under specific 
conditions, which the teacher should reinforce. 

2. Students tend to generalize variables like V, R, M to “velocity,” “radius,” and “mass” 
without thinking too much about which velocity, radius, or mass. The teacher should 
emphasize this repeatedly. 

3. Going from #5 to #6 below, students forget that they know the mass of the Sun. 

Warm-Up 

Ask students “Why is it difficult to find the masses of stars, planets, and asteroids?” Discuss the 
fact that there is no cosmic scale on which to weigh astronomical objects. Explain that students 
will now learn how astronomers measure masses, using the “Motions Find Mass” equation. 

Pre-Lesson 

1. Demo: Teacher swings mass around on a string (carefully!). Teacher should illustrate that an 
increasing force is required on the string as object swings faster. If desired, have students try the 
demo. Then complete concept checks (a) and (b). 



 In each situation, analyze the conditions required for a stable circular orbit. [Have 
students write down an answer for each, then discuss with partner, then discuss as a class.] 

(a) If the central object is replaced with a more massive object, how must the orbital velocity 
differ if the orbital radius is to be the same? 

Answer: The velocity must increase to keep the same orbital radius with a more massive 
central object. 

(b) If the velocity of the orbiting object is reduced, how must the mass of the central object 
differ if the orbital radius is to be the same? 

Answer: The mass must be decreased to keep the same orbital radius at lower velocity. 

Main Lesson 

2. Teacher will review that centripetal force mV2/R is the force necessary to maintain a stable 
circular orbit balancing gravity. (Note If either the concept of a “derivation” or the idea that F= 
mV2/R is a derived equation is not familiar, teacher should insert optional short lesson on this 
here – see Appendix below). Then complete the following concept checks. 

 Assess whether we can apply the equations listed in each situation (have students first 
write yes or no for each entry, then discuss with a partner, then discuss as a class): 

           F=GMm/R2  F=mV2/R 
Teacher draw diagram of circular orbit 
… diagram of cometary orbit 
… diagram of falling object 
… diagram of something like the demo 
 
Answers: first three are yes for F=GMm/R2, first and last are yes for F=mV2/R; all rest no 
(note since gravity is involved in creating the string tension in the demo, they could say that 
F=GMm/R2 is involved there too, just indirectly) 

3. For a situation where both the Universal Law of Gravitation and the centripetal force condition 
apply, have the students attempt to derive an equation for the central mass M in terms of the V 
and R of the orbiting body (M=V2R/G). After some time struggling, they can get help from the 
teacher. Label the result the “Motions Find Mass” equation. 

4. Stress that the Motions Find Mass equation is a useful tool in astronomy. Give some verbal 
examples, for example what do you need to know about the Earth in order to measure the mass 
of the Sun. Discuss why you don’t need to know the mass of the Earth. 

5. Teacher should walk students through the following problem on the board:  

Determine the mass of the Sun given that the Earth has an orbital speed of 30 km/s and the 
distance between the Earth and the Sun is 1.5 x 10^8 km. You may assume that G=6.67 x 10-20 
km3/(sec2*kg). 

Answer: 2x1030 kg 



6. Students should complete this problem on their own with the teacher circulating: 

 Using your answer to the previous problem, solve for the orbital speed of Jupiter given that its 
distance from the Sun is 7.8x108 km. 

Answer: 13 km/s 

7.  Students should work individually but can discuss their answers with a partner: 

Create a graph of the orbital velocity vs. distance from the Sun from the three data points for 
Earth, Mars, and Jupiter (for Mars, the orbital speed is 24 km/s and the distance to the Sun is 2.3 
x 108 km). Make the x-axis be distance in units of 1x108 km up to 20 x108 km. Make the y-axis 
be velocity in units of km/s up to 35. Solve the Motions Find Mass equation algebraically for V 
as a function of the other variables. Discuss how the shape of the graph compares to the form of 
the equation. Use the graph to predict the orbital velocity of Saturn given that it orbits 13.5x10^8 
km from the Sun. Compare with the real value [teacher should provide after students have had a 
chance to determine answer: 9.7 km/s]. Modify the curve on the graph to include the new data 
point. 

Enrichment 

If a person is standing on the surface of the Earth, he/she is rotating along with the surface. Can 
you use the person’s velocity and distance from the center of the Earth to determine the Earth’s 
mass? Discuss. [Students must distinguish rotation of rigid body from orbital rotation.] 

Post-Lesson 

8. In each situation, how can you maintain a stable circular orbit? 

(c) the velocity of the orbiting object increases, how must its orbital radius change if the 
central mass is the same? 

(d) the radius of the orbiting object decreases, how must the mass of the central object 
change if the orbital velocity is the same? 

9. An asteroid has an orbital velocity of 18.2 km/s and is located near the middle of the asteroid 
belt. Draw on your graph from class to predict the radius of the asteroid’s orbit around the Sun. 
Now solve the Motions Find Mass equation for R and compute the radius of the orbit. Compare 
your prediction and your calculation. [teacher’s note: answer is 4x108 km]. Now consider 
another asteroid with twice the mass of the first one. Compare their orbital velocities assuming 
both are located near the middle of the asteroid belt. [teacher’s note: orbital velocities are the 
same, because they do not depend on the orbiting body’s mass] 

10. Which of the following influence the orbital speed of the Moon? 
a) the radius of the Earth 
b) the radius of the Moon 
c) the mass of the Earth 
d) the mass of the Moon 

Explain your answer. 



Appendix: Derivation of Centripetal Force Equation 
 

You may have learned that the equation for centripetal force is F=mv2/R. Is this a law? What 
would make it a law? 

 
We usually think of laws as empirical truths that always hold, such as Newton’s Second Law 
F=ma. In contrast F=mv2/R is not true of just any object moving with velocity v at radius R from 
another point. Rather, this equation is derived under certain assumptions: the object should be in 
constant-speed circular motion. 
 
Once we assume those two things, they imply the centripetal force equation via the following 
derivation. 

 
First, note that from our assumptions, the object’s 
speed v isn’t changing, but the direction of motion is 
changing. That means by definition the object is 
accelerating, because its velocity vector is changing 
by ∆v (see diagram at left). 
 
By definition: 
v=∆r/∆t   and   a=∆v/∆t 
 

 
Now if we want to measure the change 
in a very small amount of time ∆t, we 
should realize that the ∆v is almost 
perfectly toward the center of the 
circle, as illustrated in the diagram. 
This means from the geometry of 
similar triangles: 
 
∆v/v=∆r/r 
 
If we combine this equation with the 
two definitions above, we get: 
a = ∆v/∆t = (v∆r/r)/∆t = v2/r 
 
 
Look back: why does this derivation break down without the assumption of constant circular 
motion? 


